Objective To evaluate the effect of human telomerase reverse transcriptase (hTERT) gene antisense oligodeoxynucleotide (ASODN) ontelomerase activity in K562 cells.Methods Telomerase activity was determined by polymera...Objective To evaluate the effect of human telomerase reverse transcriptase (hTERT) gene antisense oligodeoxynucleotide (ASODN) ontelomerase activity in K562 cells.Methods Telomerase activity was determined by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA) in K562 cellstreated with ASODN and hTERT mRNA expression was detected by reverse transcriptase polymerase chain reaction (RT-PCR).Results The hTERT mRNA level was decreased, and teloraerase activity was significantly inhibited when the K562 cells were treated withASODN for 48 h.Conclusion It is suggested that hTERT ASODN might specifically inhibit telomerase activity of K562 cells at translation level, and it isfurther proved that hTERT gene has significant correlation with telomerase activity.展开更多
AIM: To investigate the effects on telomerase activity of transfection of human T-STAR gene full-length sense cDNA or partial antisense cDNA into human colon cancer cell line HCT-116.METHODS: mRNA and protein expres...AIM: To investigate the effects on telomerase activity of transfection of human T-STAR gene full-length sense cDNA or partial antisense cDNA into human colon cancer cell line HCT-116.METHODS: mRNA and protein expression levels of T-STAR gene were determined by RT-PCR and western blot, and telomerase activity was measured by PCR- ELISA, after transfection of T-STAR sense or antisense gene into HCT-116 cells with lipofectamine. RESULTS: T-STAR gene expression was enhanced or knocked down both at mRNA and protein levels, and telomerase activity was significantly increased or decreased. CONCLUSION: The T-STAR gene may participate in regulation of telomerase activity in human colon cancer HCT-116 cells in a parallel fashion.展开更多
Objective: To study the relationship of the telomerase activity and the p53 gene mutation in cardiac cancer. Methods: Telomerase activity and the p53 gene mutation were detected in 46 case of cardiac cancer, peri-ca...Objective: To study the relationship of the telomerase activity and the p53 gene mutation in cardiac cancer. Methods: Telomerase activity and the p53 gene mutation were detected in 46 case of cardiac cancer, peri-cancerous and 30 case of normal mucosa by TRAP-ELISA and PCR-SSCP. Results: The rate of expression of telomerase activity in cardiac cancer, peri-cancerous and normal mucosa were 82.61% (38/46), 43.48% (20/46) and 13.33% (4/30) respectively. The rate of Exon5→,8 of p53 gene mutation were 39,13% (18/46), 4.35% (2/46) and 0.00% respectively. There was significant difference between group cancer and without cancer (P 〈 0.01). Mean of A^- value of telomerase is 1.89:1:0.41 in cancer group and were 1.49:1: 0.43, 0.54:1:0.45 respectively in peri-canvcerous and normal mucosa, there were significant differences in cancer group and group of without cancer (P 〈 0.05). The rate of p53 gene mutations in group of expression of telomerase activity was 44.74% (17/38), and 12.50% (1/8) in without expression of telomerase activity. There were significant differences between the two groups. Conclusion: The rate of expression of telomerase activity and mean of A^- value of telomerase in cardiac cancer were obviously higher than without cancer, which indicating telomerase activity was closely related with the occurrence of cardiac cancer. P53 gene mutation in cardiac cancer were higher than the tissue of without cancer, and the rate of p53 gene mutation in telomerase activity were obviously higher than the group of without cancer. This shows the p53 gene mutation can loss of function of suppressing cancer and prompt telomerase activity and cause the cardiac cancer.展开更多
The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but...The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3Tat and subtype C isolate HIV1084 i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084 i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxylterminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.展开更多
基金Science and Technology of Guangzhou City (2001-Z-037-01)Guangdong Province (99M1204G)
文摘Objective To evaluate the effect of human telomerase reverse transcriptase (hTERT) gene antisense oligodeoxynucleotide (ASODN) ontelomerase activity in K562 cells.Methods Telomerase activity was determined by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA) in K562 cellstreated with ASODN and hTERT mRNA expression was detected by reverse transcriptase polymerase chain reaction (RT-PCR).Results The hTERT mRNA level was decreased, and teloraerase activity was significantly inhibited when the K562 cells were treated withASODN for 48 h.Conclusion It is suggested that hTERT ASODN might specifically inhibit telomerase activity of K562 cells at translation level, and it isfurther proved that hTERT gene has significant correlation with telomerase activity.
基金Supported by the National Natural Science Foundation of China,No. 30271442, No. 39980010
文摘AIM: To investigate the effects on telomerase activity of transfection of human T-STAR gene full-length sense cDNA or partial antisense cDNA into human colon cancer cell line HCT-116.METHODS: mRNA and protein expression levels of T-STAR gene were determined by RT-PCR and western blot, and telomerase activity was measured by PCR- ELISA, after transfection of T-STAR sense or antisense gene into HCT-116 cells with lipofectamine. RESULTS: T-STAR gene expression was enhanced or knocked down both at mRNA and protein levels, and telomerase activity was significantly increased or decreased. CONCLUSION: The T-STAR gene may participate in regulation of telomerase activity in human colon cancer HCT-116 cells in a parallel fashion.
文摘Objective: To study the relationship of the telomerase activity and the p53 gene mutation in cardiac cancer. Methods: Telomerase activity and the p53 gene mutation were detected in 46 case of cardiac cancer, peri-cancerous and 30 case of normal mucosa by TRAP-ELISA and PCR-SSCP. Results: The rate of expression of telomerase activity in cardiac cancer, peri-cancerous and normal mucosa were 82.61% (38/46), 43.48% (20/46) and 13.33% (4/30) respectively. The rate of Exon5→,8 of p53 gene mutation were 39,13% (18/46), 4.35% (2/46) and 0.00% respectively. There was significant difference between group cancer and without cancer (P 〈 0.01). Mean of A^- value of telomerase is 1.89:1:0.41 in cancer group and were 1.49:1: 0.43, 0.54:1:0.45 respectively in peri-canvcerous and normal mucosa, there were significant differences in cancer group and group of without cancer (P 〈 0.05). The rate of p53 gene mutations in group of expression of telomerase activity was 44.74% (17/38), and 12.50% (1/8) in without expression of telomerase activity. There were significant differences between the two groups. Conclusion: The rate of expression of telomerase activity and mean of A^- value of telomerase in cardiac cancer were obviously higher than without cancer, which indicating telomerase activity was closely related with the occurrence of cardiac cancer. P53 gene mutation in cardiac cancer were higher than the tissue of without cancer, and the rate of p53 gene mutation in telomerase activity were obviously higher than the group of without cancer. This shows the p53 gene mutation can loss of function of suppressing cancer and prompt telomerase activity and cause the cardiac cancer.
基金supported by grants from the National Natural Science Foundation of China (No.81571987 and 81371820)the Ph.D. Candidate Research Innovation Fund of Nankai University (2015) (No.68150003)
文摘The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3Tat and subtype C isolate HIV1084 i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084 i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxylterminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.