The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In...The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In this redox system, polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and arabic gum were served as surfactants. The results showed that reducing agents and surfactants both act as the capping agent adhering to the certain facets of silver seeds to block this surface to grow. The relative intensity of reducing agents also takes an active part in influencing the growth rate and direction of silver seeds. It was also found that halides can accelerate the speed of Ostwald ripening by adding Cl?, Br? and I?into the aqueous and have some effects on the morphology of the nanoplates.展开更多
Promoted by active indium produced in situ by Sm/InCl3 ?4H2O system, arylidenecyano- acetates undergo reductive cyclodimerization to afford cyclopentamine derivatives with high stereoselectivity under mild conditions ...Promoted by active indium produced in situ by Sm/InCl3 ?4H2O system, arylidenecyano- acetates undergo reductive cyclodimerization to afford cyclopentamine derivatives with high stereoselectivity under mild conditions in aqueous media.展开更多
Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition me...Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts.展开更多
Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfa...Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.展开更多
Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It h...Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.展开更多
Controlling the surface structure and composi- tion at the atomic level is an effective way to tune the cat- alytic properties of bimetallic catalysts. Herein, we demon- strate a generalized strategy to synthesize hig...Controlling the surface structure and composi- tion at the atomic level is an effective way to tune the cat- alytic properties of bimetallic catalysts. Herein, we demon- strate a generalized strategy to synthesize highly monodis- perse, surfactant-free octahedral PtxNi1-x nanoparticles with tunable surface structure and composition. With increasing the Ni content in the bulk composition, the degree of concave- ness of the octahedral PtxNi1-x nanoparticles increases. We systematically studied the correlation between their surface structure/composition and their observed oxygen reduction activity. Electrochemical studies have shown that all the octa- hedral PtxNi1-x nanoparticles exhibit enhanced oxygen reduc- tion activity relative to the state-of-the-art commercial Pt/C catalyst. More importantly, we find that the surface struc- ture and composition of the octahedral PtxNi1-x nanoparti- cles have significant effect on their oxygen reduction activ- ity. Among the studied PtxNi1-x nanoparticles, the octahedral PtlNi1 nauoparticles with slight concaveness in its (111) facet show the highest activity. At 0.90 V vs. RHE, the Pt mass and specific activity of the octahedral PhNil nanoparticles are 7.0 and 7.5-fold higher than that of commercial Pt/C catalyst, re- spectively. The present work not only provides a generalized strategy to synthesize highly monodisperse, surfactant-free octahedral PtxNi1-x nanoparticles with tunable surface struc- ture and composition, but also provides insights to the struc- ture-activity correlation.展开更多
Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural prope...Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural properties and chemical activity. In order to detail the effect of each functional group, we correlated the activity with the surface density of each group, and found that the carboxyl groups play a pivotal role in two important catalytic reactions, namely the electrochemical oxygen reduction reaction (ORR) and agar conversion to 5-hydroxymethylfurfural (HMF). During the processes, the hydrophilic surface provides a strong affinity for reaction substrates while the improved porosity allows the efficient diffusion of reactants and products. Furthermore, the activity of functionalized CNTs for agar conversion remained almost unchanged during nine cycles of reaction. This work highlights a strategy for improving the activity of CNTs for electrochemical ORR and agar conversion reactions, as well a promising application of carboxyl-rich CNTs as a solid acid catalyst to produce high-purity HMF--an important chemical intermediate.展开更多
基金Project(51373097)supported by The National Natural Science Foundation of China
文摘The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In this redox system, polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and arabic gum were served as surfactants. The results showed that reducing agents and surfactants both act as the capping agent adhering to the certain facets of silver seeds to block this surface to grow. The relative intensity of reducing agents also takes an active part in influencing the growth rate and direction of silver seeds. It was also found that halides can accelerate the speed of Ostwald ripening by adding Cl?, Br? and I?into the aqueous and have some effects on the morphology of the nanoplates.
文摘Promoted by active indium produced in situ by Sm/InCl3 ?4H2O system, arylidenecyano- acetates undergo reductive cyclodimerization to afford cyclopentamine derivatives with high stereoselectivity under mild conditions in aqueous media.
文摘Water oxidation is the bottleneck of artificial photosynthesis.Since the first ruthenium-based molecular water oxidation catalyst,the blue dimer,was reported by Meyer’ s group in 1982,catalysts based on transition metals have been widely employed to explore the mechanism of water oxidation.Because the oxidation of water requires harsh oxidative conditions,the stability of transition complexes under the relevant catalytic conditions has always been a challenge.In this work,we report the redox properties of a CuⅢ complex(TAML-CuⅢ] with a redox-active macrocyclic ligand(TAML) and its reactivity toward catalytic water oxidation.TAML-CuⅢ displayed a completely different electrochemical behavior from that of the TAML-CoⅢ complex previously reported by our group.TAML-CuⅢ can only be oxidized by one-electron oxidation of the ligand to form TAML·+-CuⅢand cannot achieve water activation through the ligand-centered proton-coupled electron transfer that takes place in the case of TAML-CoⅢ.The generated TAML·+-CuⅢ intermediate can undergo further oxidation and ligand hydrolysis with the assistance of borate anions,triggering the formation of a heterogeneous B/CuOx nanocatalyst Therefore,the choice of the buffer solution has a significant influence on the electrochemical behavior and stability of molecular water oxidation catalysts.
基金Supported by Tianjin Science and Technology Committee (No. 033604711)Science and Technology Foundation of Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (No. 03-2-064)
文摘Photocatalytic reduction of 6-chloro-3-nitrotoluene-4-sulfonic acid (CNSA) was studied in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. A mixture of CNSA, TiO2, water, additives and surfactants was put into a quartz glass reactor with a jacket, which was irradiated with a high pressure Hg lamp in the purging of nitrogen gas. With methanol, the conversion of CNSA increased from 7.7% to 34.6%. Three surfactants significantly promoted the photocatalytic reduction conversion in reduced order of sodium dodecylbenzenesulfonate (DBS), cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS). In suspensions involving DBS and CTAB respectively, CNSA conversion increased in consistence with the adsorption ratio with methanol, but varied inversely with the adsorption ratio without methanol. But no obvious influence on the adsorption ratio was observed with or without methanol added when the SDS concentration was critical micelle concentration (cmc). The photocatalytic reduction of CNSA was enhanced in UV-irradiated TiO2 suspensions in the presence of methanol and surfactants. Methanol inhibited the recombination of photogenerated holes and electrons efficiently. Surfactants around 1 cmc led to the highest reduction conversion.
基金supported by the National Natural Science Foundation of China (21701043, 21573066, and 51402100)the Provincial Natural Science Foundation of Hunan (2016JJ1006 and 2016TP1009)the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province and Shenzhen Science and Technology Program (JCYJ20170306141659388)
文摘Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.
基金supported by the National Research Foundation,Prime Minister’s Office,Singapore under its CREATE Programmefinancial support by the Defence Acquisition Program Administration and Agency for Defence Development(UD120080GD),Republic of Korea
文摘Controlling the surface structure and composi- tion at the atomic level is an effective way to tune the cat- alytic properties of bimetallic catalysts. Herein, we demon- strate a generalized strategy to synthesize highly monodis- perse, surfactant-free octahedral PtxNi1-x nanoparticles with tunable surface structure and composition. With increasing the Ni content in the bulk composition, the degree of concave- ness of the octahedral PtxNi1-x nanoparticles increases. We systematically studied the correlation between their surface structure/composition and their observed oxygen reduction activity. Electrochemical studies have shown that all the octa- hedral PtxNi1-x nanoparticles exhibit enhanced oxygen reduc- tion activity relative to the state-of-the-art commercial Pt/C catalyst. More importantly, we find that the surface struc- ture and composition of the octahedral PtxNi1-x nanoparti- cles have significant effect on their oxygen reduction activ- ity. Among the studied PtxNi1-x nanoparticles, the octahedral PtlNi1 nauoparticles with slight concaveness in its (111) facet show the highest activity. At 0.90 V vs. RHE, the Pt mass and specific activity of the octahedral PhNil nanoparticles are 7.0 and 7.5-fold higher than that of commercial Pt/C catalyst, re- spectively. The present work not only provides a generalized strategy to synthesize highly monodisperse, surfactant-free octahedral PtxNi1-x nanoparticles with tunable surface struc- ture and composition, but also provides insights to the struc- ture-activity correlation.
文摘Ozone treatment is a common way to functionalize commercial multi-walled carbon nanotubes (CNTs) with various oxygen functionalities like carboxyl, phenol and lactone groups, in order to enhance their textural properties and chemical activity. In order to detail the effect of each functional group, we correlated the activity with the surface density of each group, and found that the carboxyl groups play a pivotal role in two important catalytic reactions, namely the electrochemical oxygen reduction reaction (ORR) and agar conversion to 5-hydroxymethylfurfural (HMF). During the processes, the hydrophilic surface provides a strong affinity for reaction substrates while the improved porosity allows the efficient diffusion of reactants and products. Furthermore, the activity of functionalized CNTs for agar conversion remained almost unchanged during nine cycles of reaction. This work highlights a strategy for improving the activity of CNTs for electrochemical ORR and agar conversion reactions, as well a promising application of carboxyl-rich CNTs as a solid acid catalyst to produce high-purity HMF--an important chemical intermediate.