A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and ...A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and superior stability. On the basis of H2-TPR, X-ray photoelectron spectroscopy, and Raman characterizations, this can be ascribed to better redox ability, octahedrally coordinated Co2+ ions derived from the CoO phase, and other surface oxygen species, such as O2– or O–. The extra octahedrally coordinated Co2+ ions may reside in a more open framework site than the inactive tetrahedrally coordinated Co2+ ions. This species of Co2+ can easily make contact with oxygen and oxidize. The surface oxygen species, along with the octahedrally coordinated Co2+ ions, and a part of the Co3+ species constitute the Co2+-oxygen species-Co3+ sites, which enhance the catalytic activities. According to DRIFTS, Co2+-oxygen species-Co3+ makes oxidation of HCHO and conversion of DOM to formate easier.展开更多
The catalytic performance of a series of cobalt(Ⅱ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation of p-xylene to p-...The catalytic performance of a series of cobalt(Ⅱ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation of p-xylene to p-toluic acid (PTA) were investigated. The results showed that the existing synergistic action in the catalytic oxidation can shorten the induction period of the radical reaction and improve the yield of PTA.展开更多
The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditi...The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.展开更多
Low-temperature CO oxidation has attracted extensive interest in heterogeneous catalysis because of the potential applications in fuel cells,air cleaning,and automotive emission reduction.In the present study,theoreti...Low-temperature CO oxidation has attracted extensive interest in heterogeneous catalysis because of the potential applications in fuel cells,air cleaning,and automotive emission reduction.In the present study,theoretical investigations have been performed using density functional theory to elucidate the crystal plane effect and structure sensitivity of Co3O4 nano-catalysts toward catalyzing CO oxidation.It is shown that the surface Co–O ion pairs are the active site for CO oxidation on the Co3O4 surface.Because of stronger CO adsorption and easier removal of lattice oxygen ions,the Co3O4(011)surface is shown to be more reactive for CO oxidation than the Co3O4(001)surface,which is consistent with previous experimental results.By comparing the reaction pathways at different sites on each surface,we have further elucidated the nature of the crystal plane effect on Co3O4 surfaces and attributed the reactivity to the surface reducibility.Our results suggest that CO oxidation catalyzed by Co3O4 nanocrystals has a strong crystal plane effect and structure sensitivity.Lowering the vacancy formation energy of the oxide surface is key for high CO oxidation reactivity.展开更多
Chemically precipitated β type nickel hydroxide powder was surface modified by electroless deposition of Co Zn coatings,and physical properties of both the modified and unmodified nickel hydroxide were characterized ...Chemically precipitated β type nickel hydroxide powder was surface modified by electroless deposition of Co Zn coatings,and physical properties of both the modified and unmodified nickel hydroxide were characterized by scanning electron microscopy (SEM), specific surface area (BET), X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). It has been found that Co and Zn components of the surface electroless coatings exist in the oxidized state. Electrochemical performances of pasted nickel electrodes using the modified nickel hydroxide as an active material were investigated, and compared with those of the electrodes prepared with the unmodified nickel hydroxide. Charge/discharge tests show that the modified nickel hydroxide electrodes exhibit better performances in the charge efficiency, specific discharge capacity and active material utilization. Their resistance to swelling with cycling is also superior to that of the unmodified nickel hydroxide electrodes. Cyclic voltammetric (CV) studies indicate that the modified electrodes have a higher electrochemical activity, and the porous pasted nickel electrodes have some distinguished CV characteristics in comparison with those of the thin film nickel electrodes.展开更多
Three cobalt complexes bearing tunable,redox-active bipyridyl N-heterocyclic carbene(NHC)-based ligands have been studied for electrocatalytic hydrogen evolution from aqueous solutions.The effect of structural modific...Three cobalt complexes bearing tunable,redox-active bipyridyl N-heterocyclic carbene(NHC)-based ligands have been studied for electrocatalytic hydrogen evolution from aqueous solutions.The effect of structural modifications to the ligand framework is investigated across the catalyst series,which includes a non-macrocyclic derivative(1-Co)and 16-(2-Co)and 15-(3-Co)membered macrocycles.A structure-activity relationship is demonstrated,in which the macrocyclic complexes have greater activity compared to their non-macrocyclic counterpart with the most rigid catalyst,supported by the 15-membered macrocycle,performing best overall.Indeed,3-Co catalyzes H2 evolution from aqueous pH 4 acetate buffer with a Faradaic efficiency of 97%at a low overpotential of 330 mV.Mechanistic studies are consistent with formation of a cobalt-hydride species that is subsequently protonated to evolve H2 via a heterolytic pathway.展开更多
Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It h...Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.展开更多
Over the past few years, electrocatalysis for the oxygen reduction reaction in alkaline solutions has undergone tremendous advances, and non-precious metal catalysts are of prime interest. In this study, we present a ...Over the past few years, electrocatalysis for the oxygen reduction reaction in alkaline solutions has undergone tremendous advances, and non-precious metal catalysts are of prime interest. In this study, we present a highly promising CoO@Co/N-C (where N-C represents a N-doped carbon material) catalyst, achieving an onset potential of 0.99 V (versus the reversible hydrogen electrode (RHE)) and a limiting current density of 7.07 mA-cm-2 (at 0.3 V versus RHE) at a rotation rate of 2,500 rpm in an O2-saturated 0.1 M KOH solution, comparable to a commercial Pt/C catalyst. The H2--O2 alkaline fuel cell test of CoO@Co/N-C as the cathode reveals a maximum power density of 237 mW.cm 2. Detailed investigation clarifies that a synergistic effect, induced by C-N, Co-N-C, and CoO/Co moieties, is responsible for the bulk of the gain in catalytic activity.展开更多
基金support by the National Natural Science Foundation of China(91544227,21777166)the National Key R&D Program of China(2016YFC0202202)~~
文摘A series of Co-based oxide catalysts were prepared by calcining hydrotalcite precursors in different atmospheres and studied for HCHO catalytic oxidation. The N2-calcined catalyst exhibits enhanced HCHO oxidation and superior stability. On the basis of H2-TPR, X-ray photoelectron spectroscopy, and Raman characterizations, this can be ascribed to better redox ability, octahedrally coordinated Co2+ ions derived from the CoO phase, and other surface oxygen species, such as O2– or O–. The extra octahedrally coordinated Co2+ ions may reside in a more open framework site than the inactive tetrahedrally coordinated Co2+ ions. This species of Co2+ can easily make contact with oxygen and oxidize. The surface oxygen species, along with the octahedrally coordinated Co2+ ions, and a part of the Co3+ species constitute the Co2+-oxygen species-Co3+ sites, which enhance the catalytic activities. According to DRIFTS, Co2+-oxygen species-Co3+ makes oxidation of HCHO and conversion of DOM to formate easier.
基金supported by the National Natural Science Foundation of China(Grant No.20072025).
文摘The catalytic performance of a series of cobalt(Ⅱ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation of p-xylene to p-toluic acid (PTA) were investigated. The results showed that the existing synergistic action in the catalytic oxidation can shorten the induction period of the radical reaction and improve the yield of PTA.
基金supported by National Natural Science Foundation of China (20977115, 21272281)Natural Science Foundation of Hubei Province (2014CFB919)the Science and Technology Plan Innovation Team of Wuhan City (2015070504020220)~~
文摘The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.
基金supported by the National Basic Research Program of China(2011CB932401)the National Natural Science Foundation of China(21221062)~~
文摘Low-temperature CO oxidation has attracted extensive interest in heterogeneous catalysis because of the potential applications in fuel cells,air cleaning,and automotive emission reduction.In the present study,theoretical investigations have been performed using density functional theory to elucidate the crystal plane effect and structure sensitivity of Co3O4 nano-catalysts toward catalyzing CO oxidation.It is shown that the surface Co–O ion pairs are the active site for CO oxidation on the Co3O4 surface.Because of stronger CO adsorption and easier removal of lattice oxygen ions,the Co3O4(011)surface is shown to be more reactive for CO oxidation than the Co3O4(001)surface,which is consistent with previous experimental results.By comparing the reaction pathways at different sites on each surface,we have further elucidated the nature of the crystal plane effect on Co3O4 surfaces and attributed the reactivity to the surface reducibility.Our results suggest that CO oxidation catalyzed by Co3O4 nanocrystals has a strong crystal plane effect and structure sensitivity.Lowering the vacancy formation energy of the oxide surface is key for high CO oxidation reactivity.
文摘Chemically precipitated β type nickel hydroxide powder was surface modified by electroless deposition of Co Zn coatings,and physical properties of both the modified and unmodified nickel hydroxide were characterized by scanning electron microscopy (SEM), specific surface area (BET), X ray diffraction (XRD) and X ray photoelectron spectroscopy (XPS). It has been found that Co and Zn components of the surface electroless coatings exist in the oxidized state. Electrochemical performances of pasted nickel electrodes using the modified nickel hydroxide as an active material were investigated, and compared with those of the electrodes prepared with the unmodified nickel hydroxide. Charge/discharge tests show that the modified nickel hydroxide electrodes exhibit better performances in the charge efficiency, specific discharge capacity and active material utilization. Their resistance to swelling with cycling is also superior to that of the unmodified nickel hydroxide electrodes. Cyclic voltammetric (CV) studies indicate that the modified electrodes have a higher electrochemical activity, and the porous pasted nickel electrodes have some distinguished CV characteristics in comparison with those of the thin film nickel electrodes.
文摘Three cobalt complexes bearing tunable,redox-active bipyridyl N-heterocyclic carbene(NHC)-based ligands have been studied for electrocatalytic hydrogen evolution from aqueous solutions.The effect of structural modifications to the ligand framework is investigated across the catalyst series,which includes a non-macrocyclic derivative(1-Co)and 16-(2-Co)and 15-(3-Co)membered macrocycles.A structure-activity relationship is demonstrated,in which the macrocyclic complexes have greater activity compared to their non-macrocyclic counterpart with the most rigid catalyst,supported by the 15-membered macrocycle,performing best overall.Indeed,3-Co catalyzes H2 evolution from aqueous pH 4 acetate buffer with a Faradaic efficiency of 97%at a low overpotential of 330 mV.Mechanistic studies are consistent with formation of a cobalt-hydride species that is subsequently protonated to evolve H2 via a heterolytic pathway.
基金supported by the National Natural Science Foundation of China (21701043, 21573066, and 51402100)the Provincial Natural Science Foundation of Hunan (2016JJ1006 and 2016TP1009)the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province and Shenzhen Science and Technology Program (JCYJ20170306141659388)
文摘Oxygen reduction reaction (ORR) is key to fuel cells and metal-air batteries which are considered as the al- ternative clean energy. Various carbon materials have been widely researched as ORR electrocatalysts. It has been ac- cepted that heteroatom doping and exposure of the edge sites can effectively improve the activity of carbon materials. In this work, we used a simple method to prepare a novel N, P-dual doped carbon-based catalyst with many holes on the surface. In addition, trace level Co doping in the carbon material forming Co-N-C active species can further enhance the ORR performance. On one hand, the doping can adjust the elec- tronic structure of carbon atoms, which would induce more active sites for ORR. And on the other hand, the holes formed on the surface of carbon nanosheets would expose more edge sites and can improve the intrinsic activity of carbon. Due to the heteroatom doping and the exposed edge sites, the pre- pared carbon materials showed highly excellent ORR perfor- mance, dose to that of commercial Pt/C.
文摘Over the past few years, electrocatalysis for the oxygen reduction reaction in alkaline solutions has undergone tremendous advances, and non-precious metal catalysts are of prime interest. In this study, we present a highly promising CoO@Co/N-C (where N-C represents a N-doped carbon material) catalyst, achieving an onset potential of 0.99 V (versus the reversible hydrogen electrode (RHE)) and a limiting current density of 7.07 mA-cm-2 (at 0.3 V versus RHE) at a rotation rate of 2,500 rpm in an O2-saturated 0.1 M KOH solution, comparable to a commercial Pt/C catalyst. The H2--O2 alkaline fuel cell test of CoO@Co/N-C as the cathode reveals a maximum power density of 237 mW.cm 2. Detailed investigation clarifies that a synergistic effect, induced by C-N, Co-N-C, and CoO/Co moieties, is responsible for the bulk of the gain in catalytic activity.