期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Pt合金催化剂电化学活性面积表征方法综述 被引量:1
1
作者 张慧 周芬 潘牧 《科学通报》 EI CAS CSCD 北大核心 2023年第5期448-456,共9页
质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFCs)作为高效清洁的电化学能源转换装置,是目前应用最广泛、研究最热门的氢燃料电池之一.基于PEMFCs的低成本与高性能需求,Pt合金催化剂极具研究前景.电化学活性面积(electr... 质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFCs)作为高效清洁的电化学能源转换装置,是目前应用最广泛、研究最热门的氢燃料电池之一.基于PEMFCs的低成本与高性能需求,Pt合金催化剂极具研究前景.电化学活性面积(electrochemical active surface area,ECSA)是筛选燃料电池高效催化剂以及研究催化动力学基础理论的重要参数,其评价的准确性至关重要.对于Pt/C催化剂ECSA的表征方法已经成熟,然而Pt合金因其不同于Pt/C催化剂的化学组成和结构,直接将传统Pt/C催化剂ECSA表征方法移植到Pt合金催化剂,将不再满足表征准确性需求.本文对Pt合金催化剂ECSA的表征方法及其表征ECSA偏差的来源进行综述. 展开更多
关键词 质子交换膜燃料电池 Pt合金催化剂 电化学活性面积 物理表征 电化学表征
原文传递
电沉积铁氰化镍测定多孔膜电极的电活性面积 被引量:2
2
作者 马旭莉 杨言言 +1 位作者 王忠德 郝晓刚 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第4期776-780,共5页
采用电化学方法测定三维多孔膜电极的电活性有效表面积、活性体积和表面覆盖度。以三维多孔电极或沉积有过渡金属铁氰化镍半导体薄膜的三维多孔膜电极为工作电极,分别在含铁氰化钾和不含铁氰化钾的碱金属溶液中测定不同扫描速度下的循... 采用电化学方法测定三维多孔膜电极的电活性有效表面积、活性体积和表面覆盖度。以三维多孔电极或沉积有过渡金属铁氰化镍半导体薄膜的三维多孔膜电极为工作电极,分别在含铁氰化钾和不含铁氰化钾的碱金属溶液中测定不同扫描速度下的循环伏安曲线,利用膜电极在不同溶液体系中氧化/还原反应的可逆特性测定其电活性有效表面积和覆盖度;同时结合计时库仑法获得三维多孔膜电极内膜的活性体积和平均膜厚。结果表明:该方法具有电化学反应响应快速、灵敏且精确度高的优点,操作简单且快捷方便,可靠性好。 展开更多
关键词 循环伏安 三维多孔电极 活性面积 铁氰化镍 计时库仑
原文传递
微波加热碳酸钾法制备烟杆基高比表面积活性炭 被引量:18
3
作者 张利波 彭金辉 +3 位作者 夏洪应 李玮 曲雯雯 朱学云 《功能材料》 EI CAS CSCD 北大核心 2008年第1期136-138,共3页
以烟杆炭化料为原料,采用微波加热碳酸钾活化法制备了高比表面积活性炭。研究了微波加热时间和碱炭比对活性炭的得率和吸附性能的影响,得到了优化工艺条件,所得活性炭产品的碘吸附值为1834mg/g,亚甲基兰吸附值为517.5mg/g,得率为16.65%... 以烟杆炭化料为原料,采用微波加热碳酸钾活化法制备了高比表面积活性炭。研究了微波加热时间和碱炭比对活性炭的得率和吸附性能的影响,得到了优化工艺条件,所得活性炭产品的碘吸附值为1834mg/g,亚甲基兰吸附值为517.5mg/g,得率为16.65%。产品的吸附性能超过了双电层电容器专用活性炭(LY/T 1617-2004)标准的要求,同常规加热相比,活化时间缩短了78.26%。同时测定了该活性炭的氮吸附等温线,通过非定域化密度函数理论表征了活性炭的孔结构。该高比表面积活性炭的比表面积为2557m2/g,总孔体积为1.6470ml/g。 展开更多
关键词 微波加热 碳酸钾 高比表面积活性 孔结构
下载PDF
KOH活化高比表面积椰壳活性炭的制备及其性质研究 被引量:14
4
作者 王国栋 邓先伦 +1 位作者 朱光真 郭昊 《林产化学与工业》 EI CAS CSCD 北大核心 2013年第2期108-112,共5页
以椰壳炭化料为原料,通过KOH活化法制备高比表面积活性炭,并探索温度、时间和活化比对活性炭吸附性能的影响。通过单因素试验发现,活化温度800℃,活化时间60 min,活化比值为5的条件下活性炭的吸附性能最优。制备出的活性炭比表面积为3 3... 以椰壳炭化料为原料,通过KOH活化法制备高比表面积活性炭,并探索温度、时间和活化比对活性炭吸附性能的影响。通过单因素试验发现,活化温度800℃,活化时间60 min,活化比值为5的条件下活性炭的吸附性能最优。制备出的活性炭比表面积为3 360 m2/g,总孔孔容为1.798 cm3/g,平均孔径为2.140 nm,对碘的吸附性能为2 809 mg/g,对亚甲基蓝溶液的吸附性能为675 mg/g。 展开更多
关键词 椰壳 高比表面积活性 KOH法
下载PDF
海南椰壳与椰壳渣制备高比表面积活性炭原料脱灰工艺 被引量:15
5
作者 姚伯元 黄广民 +1 位作者 窦智峰 林白云 《化工学报》 EI CAS CSCD 北大核心 2006年第6期1458-1463,共6页
椰壳、椰壳渣与石油焦性能差异明显,必须脱灰处理才能作为高比表面积活性炭优质原料·正交实验结果表明采用10%的H3PO4,常温下处理3h,椰壳灰分可脱至0·42%,椰壳渣可脱至0·75%·改进椰壳酸水解工艺后,椰壳渣灰分也可脱... 椰壳、椰壳渣与石油焦性能差异明显,必须脱灰处理才能作为高比表面积活性炭优质原料·正交实验结果表明采用10%的H3PO4,常温下处理3h,椰壳灰分可脱至0·42%,椰壳渣可脱至0·75%·改进椰壳酸水解工艺后,椰壳渣灰分也可脱至0·40%,满足制备高比表面积活性炭优质原料要求·活化后产品酸洗脱灰可提高吸附性能9%,浮选脱灰可提高吸附性能11%. 展开更多
关键词 椰壳渣 脱灰 高比表面积活性
下载PDF
KOH活化制备高比表面积竹活性炭研究 被引量:17
6
作者 余梅芳 胡晓斌 +1 位作者 王康成 尹晖 《浙江林业科技》 北大核心 2006年第3期17-20,共4页
研究了KOH浸渍量、活化温度、活化时间等因素对活性炭收率、微孔结构和吸附性能的影响,结果表明:当碱/竹比为0.7,炭化温度为500℃,炭化时间为1h,活化温度为800℃,活化时间为20min时,所制得的活性炭的微孔比表面积达2492m2/g、碘吸附值23... 研究了KOH浸渍量、活化温度、活化时间等因素对活性炭收率、微孔结构和吸附性能的影响,结果表明:当碱/竹比为0.7,炭化温度为500℃,炭化时间为1h,活化温度为800℃,活化时间为20min时,所制得的活性炭的微孔比表面积达2492m2/g、碘吸附值2382mg/g、亚甲基蓝吸附值558mg/g。 展开更多
关键词 高比表面积活性 竹炭 吸附性能 孔结构
下载PDF
高比表面积活性炭载体结构对乙炔法合成醋酸乙烯催化剂活性的影响 被引量:13
7
作者 周桂林 蒋毅 +2 位作者 吕绍洁 李子健 邱发礼 《石油化工》 CAS CSCD 北大核心 2004年第7期608-611,共4页
以不同的高比表面积(比表面积大于等于1 839 m2/g)活性炭为载体,在接近现有工业生产条件下研究了催化剂载体的结构对合成醋酸乙烯(VAc)生产能力的影响。实验结果表明,合成VAc的生产能力随活性炭载体比表面积的增加而增加,活性炭载体的... 以不同的高比表面积(比表面积大于等于1 839 m2/g)活性炭为载体,在接近现有工业生产条件下研究了催化剂载体的结构对合成醋酸乙烯(VAc)生产能力的影响。实验结果表明,合成VAc的生产能力随活性炭载体比表面积的增加而增加,活性炭载体的比表面积为2 713 m2/g时催化剂的生产能力是载体比表面积为1 839 m2/g时催化剂生产能力的1.30倍;活性炭载体中孔径1-2 nm的孔对合成VAc的催化括性影响不大,孔径2-40 nm的孔对催化过程起主要作用。实验结果还表明,在空速小于360 h-1时,活性炭载体比表面积越大合成VAc的生产能力受空速的影响越大,即活性炭载体比表面积越大催化反应受扩散影响越严重;在高温(185-195℃)段,活性炭载体比表面积越大合成VAc的生产能力受温度的影响也越小。 展开更多
关键词 高比表面积活性 催化剂 载体结构 醋酸乙烯 乙炔 扩散影响
下载PDF
高比表面积竹炭基活性炭的孔结构对电容性能的影响 被引量:4
8
作者 张东升 邓丛静 +2 位作者 夏笑虹 刘洪波 何月德 《林产化学与工业》 EI CAS CSCD 北大核心 2010年第5期25-30,共6页
以毛竹为炭前驱体,KOH作活化剂,制备具有高比表面积的活性炭(HSAAC)材料,考察了KOH与竹炭的质量比(碱炭比)对活性炭孔结构、吸附性能和电容性能的影响。结果表明:随着碱炭比值的增加,活性炭的比表面积、中孔容积和总孔容增大,微孔孔容... 以毛竹为炭前驱体,KOH作活化剂,制备具有高比表面积的活性炭(HSAAC)材料,考察了KOH与竹炭的质量比(碱炭比)对活性炭孔结构、吸附性能和电容性能的影响。结果表明:随着碱炭比值的增加,活性炭的比表面积、中孔容积和总孔容增大,微孔孔容先增大后减小;碘吸附值、亚甲基蓝吸附值均呈现先增大后减小的趋势,碱炭比值为4时达到最大,分别为2 168和569 mg/g。当碱炭比值为4时,可制得比表面积为2 610 m2/g、总孔容为1.24 cm3/g(其中微孔孔容0.81 cm3/g,中孔孔容0.382 cm3/g)的活性炭材料。以其为电极材料组装的电容器在30%H2SO4电解液中的比电容为206 F/g。 展开更多
关键词 竹炭 高比表面积活性 孔结构 电容性能
下载PDF
超高比表面积活性炭结构与天然气脱附量的关系 被引量:8
9
作者 周桂林 蒋毅 +1 位作者 谢红梅 邱发礼 《太阳能学报》 EI CAS CSCD 北大核心 2006年第6期613-617,共5页
以石油焦为原料、KOH为活化剂,在不同的活化条件下制得系列超高比表面积活性炭(SBET>2500m2.g-1)样品。将实验制得的不同比表面积和孔分布的超高比表面积活性炭作为天然气吸附剂,测定了不同孔径范围孔所占的表面积与天然气脱附量的关... 以石油焦为原料、KOH为活化剂,在不同的活化条件下制得系列超高比表面积活性炭(SBET>2500m2.g-1)样品。将实验制得的不同比表面积和孔分布的超高比表面积活性炭作为天然气吸附剂,测定了不同孔径范围孔所占的表面积与天然气脱附量的关系,讨论了孔分布对天然气脱附量的影响;用数学方法求得了活性炭吸附剂孔表面上单位表面积天然气的脱附量,并利用线性回归求出了天然气脱附量(V)与中孔表面积的关系。经相关性分析表明,天然气的脱附量与活性炭吸附剂中孔所具有的比表面积(Smid)具有显著的相关性,说明在活性炭吸附剂上天然气脱附量主要取决于中孔表面对天然气分子的吸附;求得中孔表面上单位表面积天然气脱附量达0.350mL.m-2,是微孔单位表面积上天然气脱附量的2倍以上;在各吸附温度、吸附压力下,天然气脱附量随活性炭吸附剂中孔表面积呈线性增加,满足线性方程:V=k.Smid+b。 展开更多
关键词 超高比表面积活性 吸附剂 天然气 脱附量 结构
下载PDF
竹炭基高比表面积活性炭电极材料的研究 被引量:30
10
作者 刘洪波 常俊玲 +1 位作者 张红波 何月德 《炭素技术》 CAS CSCD 2003年第5期1-7,共7页
以竹节为原料,在隔绝空气的条件下,经不同温度炭化处理后与KOH混合,制取竹炭基高比表面积活性炭。考察了炭化温度、KOH与竹炭的质量比、活化温度和活化时间等工艺因素对活性炭收率、微孔结构和吸附性能的影响,探讨了竹炭基高比表面积活... 以竹节为原料,在隔绝空气的条件下,经不同温度炭化处理后与KOH混合,制取竹炭基高比表面积活性炭。考察了炭化温度、KOH与竹炭的质量比、活化温度和活化时间等工艺因素对活性炭收率、微孔结构和吸附性能的影响,探讨了竹炭基高比表面积活性炭作双电层电容器电极时的充放电特性及其比电容与各种因素的关系。研究结果表明,控制适宜的炭化、活化工艺条件可制得双电极比电容达55F/g的竹炭基高比表面积活性炭,由它组装的双电层电容器具有良好的充放电性能和循环性能,但内阻过高,大电流下充放电时电容量下降过大。 展开更多
关键词 竹炭 高比表面积活性 双电层电容器 比电容 充放电特性
下载PDF
超高比表面积活性炭孔分布对天然气脱附量的影响 被引量:5
11
作者 周桂林 谢红梅 +1 位作者 蒋毅 邱发礼 《林产化学与工业》 EI CAS CSCD 2008年第6期88-92,共5页
在比表面积相同的情况下,研究了超高比表面积活性炭吸附剂孔分布对天然气脱附量的影响。研究结果表明,超高比表面积活性炭吸附剂的中孔(2nm<d<50nm)更有利于天然气的吸附储存,压力对中孔百分率高的活性炭吸附剂储存天然气能力的... 在比表面积相同的情况下,研究了超高比表面积活性炭吸附剂孔分布对天然气脱附量的影响。研究结果表明,超高比表面积活性炭吸附剂的中孔(2nm<d<50nm)更有利于天然气的吸附储存,压力对中孔百分率高的活性炭吸附剂储存天然气能力的影响更显著,温度对不同孔分布的活性炭吸附剂储存天然气能力的影响具有一致性;低压时天然气脱附量与压力遵从乘幂关系:V=A·Pn,高压时天然气脱附量与压力满足线性关系:V=k·P+b;与压缩天然气(CNG)相比,天然气脱附量增加百分率与压力满足关系:X=C·P-n。在273K、9.0MPa时,比表面积约为2600m2/g的活性炭吸附剂,中孔百分率增加27个百分点时,天然气脱附量增加27.9%,中孔百分率达79.06%时天然气脱附量达1131.7mL/g。 展开更多
关键词 超高比表面积活性 吸附剂 天然气 吸附储存 孔分布
下载PDF
马尾藻基高比表面积活性炭的制备及表征 被引量:4
12
作者 李诗杰 韩奎华 +1 位作者 韩旭东 路春美 《材料导报》 EI CAS CSCD 北大核心 2017年第6期38-44,49,共8页
以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2... 以马尾藻为原料,采用KOH活化法制备高比表面积活性炭。探索制备马尾藻基活性炭的实验方案和最佳工艺条件。采用正交实验法研究了炭化温度、炭化时间、低温活化温度、低温活化时间和浸渍时间对制得活性炭比表面积和孔容的影响。采用N_2吸附、SEM表征考察了活性炭的孔隙结构和表面形貌。通过正交实验法分析发现,制备马尾藻基高比表面积活性炭的最佳工艺条件为:炭化温度600℃,炭化时间180min,低温活化温度400℃,低温活化时间45min,浸渍时间2h。在16组实验条件下,制备的活性炭比表面积最大为3 122m2/g,所有样品的孔径几乎全部分布在6nm以内。 展开更多
关键词 马尾藻 KOH活化法 高比表面积活性 孔隙结构
下载PDF
超高比表面积活性炭储氢性能研究 被引量:4
13
作者 谢红梅 罗清明 +1 位作者 景佳佳 周桂林 《天然气化工—C1化学与化工》 CAS CSCD 北大核心 2011年第6期11-14,共4页
以石油焦为原料、KOH为活化剂制得超高比表面积活性炭吸附剂并用于H2吸附储存,采用BET和SEM对其结构进行了表征。结果表明,该吸附剂具有发达的微孔结构且其比表面积高达2693 m2/g,其孔结构以狭缝状孔结构为主。该吸附剂具有高的H2吸附... 以石油焦为原料、KOH为活化剂制得超高比表面积活性炭吸附剂并用于H2吸附储存,采用BET和SEM对其结构进行了表征。结果表明,该吸附剂具有发达的微孔结构且其比表面积高达2693 m2/g,其孔结构以狭缝状孔结构为主。该吸附剂具有高的H2吸附储存能力,在吸附压力为9.0 MPa、吸附温度为273K时,H2脱附量可达12.21 mmol.g-1。 展开更多
关键词 超高比表面积活性 吸附剂 氢气 吸附储存 石油焦
下载PDF
高比表面积活性炭吸附储氢材料的研究进展 被引量:6
14
作者 赵伟刚 罗路 王洪艳 《材料科学与工程学报》 CAS CSCD 北大核心 2016年第5期848-853,771,共7页
能源和环境被认为是本世纪人类面临的两大挑战,从而引起了人们对于"氢经济"的关注,但是氢气的储存是制约"氢经济"发展的最主要的因素。本文简述了不同的储氢方法以及氢能实用化的目标,回顾了以KOH活化制备高比表面... 能源和环境被认为是本世纪人类面临的两大挑战,从而引起了人们对于"氢经济"的关注,但是氢气的储存是制约"氢经济"发展的最主要的因素。本文简述了不同的储氢方法以及氢能实用化的目标,回顾了以KOH活化制备高比表面积活性炭的的机理和影响因素,并综述和评价了影响高比表面积活性炭吸附储氢的主要影响因素,即比表面积和微孔孔容、孔径大小和分布、表面含氧官能团和杂原子掺杂。到目前还没有一种材料(包括高比表面积活性炭)可以满足美国能源部(DOE)设定储氢系统实用化的目标,对于高比表面积活性炭的孔径控制以及改性研究或许是实现这一目标的途径。 展开更多
关键词 吸附 高比表面积活性 多孔性 表面特性
下载PDF
石油焦基高比表面积活性炭对水中Pb^(2+)离子吸附性能的研究 被引量:3
15
作者 彭凤仙 孙敏 邓益群 《激光生物学报》 CAS CSCD 2005年第3期238-240,F003,共4页
以石油焦基为原料,采用KOH活化法制取高比表面积活性炭。考察了高比表面积活性炭吸附水中Pb2+时,pH值、Pb2+浓度、吸附时间和活性炭用量等因素对Pb2+吸附量和水中Pb2+残余浓度的影响。实验结果表明:高比表面积活性炭在适宜条件下对Pb2+... 以石油焦基为原料,采用KOH活化法制取高比表面积活性炭。考察了高比表面积活性炭吸附水中Pb2+时,pH值、Pb2+浓度、吸附时间和活性炭用量等因素对Pb2+吸附量和水中Pb2+残余浓度的影响。实验结果表明:高比表面积活性炭在适宜条件下对Pb2+具有较大的吸附量和良好的再生效果。为高比表面积活性炭在废水中的实际应用提供了理论依据。 展开更多
关键词 高比表面积活性 PB^2+ 吸附
下载PDF
超高比表面积活性炭比表面积对天然气储存性能的影响 被引量:3
16
作者 周桂林 蒋毅 邱发礼 《林产化学与工业》 EI CAS CSCD 北大核心 2010年第4期29-32,共4页
在超高比表面积活性炭吸附剂孔分布相同的情况下,研究了比表面积对天然气吸附储存能力的影响。结果表明,超高比表面积活性炭的比表面积越大,越有利于天然气的吸附储存,且吸附储存天然气的能力受吸附温度和压力的影响越明显;在吸附压力低... 在超高比表面积活性炭吸附剂孔分布相同的情况下,研究了比表面积对天然气吸附储存能力的影响。结果表明,超高比表面积活性炭的比表面积越大,越有利于天然气的吸附储存,且吸附储存天然气的能力受吸附温度和压力的影响越明显;在吸附压力低于3.5MPa时遵从乘幂关系,高于3.5MPa时呈线性关系。在273K、9.0MPa时,对于孔分布相似的活性炭,比表面积增加23.7%时,天然气脱附量增加25.5%,比表面积达3348m2/g时天然气脱附量达1248.4mL/g。 展开更多
关键词 超高比表面积活性 吸附剂 天然气 吸附储存
下载PDF
中间相沥青的调制对纳米级微孔超高表面积活性炭性能的影响 被引量:5
17
作者 许斌 李铁虎 《材料科学与工艺》 EI CAS CSCD 2003年第4期434-437,共4页
以中间相沥青为原料,采用KOH活化制取了超高表面积活性炭,其比表面积高达3464m2/g,总孔容积高达2 14cm3/g,碘吸附值为3094mg/g,苯吸附值为1610mg/g.所制活性炭富含发达的微孔,其孔径主要集中在1~4nm范围内,具有优异的吸附性能.研究了... 以中间相沥青为原料,采用KOH活化制取了超高表面积活性炭,其比表面积高达3464m2/g,总孔容积高达2 14cm3/g,碘吸附值为3094mg/g,苯吸附值为1610mg/g.所制活性炭富含发达的微孔,其孔径主要集中在1~4nm范围内,具有优异的吸附性能.研究了中间相沥青调制对纳米级微孔超高表面积活性炭性能的影响,结果表明.制备中间相沥青所用原料的净化处理是制备超高表面积活性炭的关键,以1~2℃/min升至400℃并保温2~3h所得中间相沥青制取的活性炭具有极高的吸附性能,中间相沥青炭物料的碳质微晶结构对超高表面积活性炭制取起着决定性作用. 展开更多
关键词 中间相沥青 超高表面积活性 吸附性能 干燥器
下载PDF
高比表面积活性炭吸附存储天然气性能研究 被引量:2
18
作者 苏伟 张玉 +1 位作者 吴菲菲 孙艳 《化学工程》 CAS CSCD 北大核心 2015年第2期20-24,共5页
天然气中少量乙烷和丙烷的存在会直接影响活性炭对天然气的吸附存储容量。为此,体积法测定了高比表面积活性炭对甲烷、乙烷和丙烷的吸附等温线,吸附温度分别为283,293,303和313K;采用Langmuir-Freundlich(LF)方程拟合吸附等温线,得到各... 天然气中少量乙烷和丙烷的存在会直接影响活性炭对天然气的吸附存储容量。为此,体积法测定了高比表面积活性炭对甲烷、乙烷和丙烷的吸附等温线,吸附温度分别为283,293,303和313K;采用Langmuir-Freundlich(LF)方程拟合吸附等温线,得到各气体的方程参数,进而采用LRC关联式预测多组分吸附平衡数据,并计算活性炭对模拟天然气的存储能力。结果表明:活性炭对3种气体的吸附等温线都属于I型等温线,采用L-F方程可以很好地描述各气体的吸附等温线;高比表面积活性炭对模拟天然气的存储量随吸附温度的升高而显著降低,在吸附存储压力为3.5 MPa,吸附温度从283 K上升到313 K,相应的存储量(体积比)由139降低为103;与纯甲烷的吸附存储相比,模拟天然气的吸附储量(体积比)提高约20。 展开更多
关键词 天然气 吸附存储 高比表面积活性 等温线 多组分吸附
下载PDF
椰壳渣制备高比表面积活性炭 被引量:2
19
作者 窦智峰 姚伯元 +1 位作者 黄广民 刘仁成 《海南大学学报(自然科学版)》 CAS 2007年第4期383-388,共6页
通过正交实验和单因素实验探讨了以椰壳渣为原料、KOH为活化剂制备高比表面积活性炭的最佳工艺条件.考查了炭化温度、活化温度、活化时间、活化剂料比等因素对实验结果的影响.在炭化温度为600℃、碱炭质量比为2∶1、活化温度为900℃、... 通过正交实验和单因素实验探讨了以椰壳渣为原料、KOH为活化剂制备高比表面积活性炭的最佳工艺条件.考查了炭化温度、活化温度、活化时间、活化剂料比等因素对实验结果的影响.在炭化温度为600℃、碱炭质量比为2∶1、活化温度为900℃、活化时间为90 m in条件下,制备出以微孔为主、比表面积达2 180 m2.g-1、总孔容为1.19 mL.g-1的高比表面积活性炭. 展开更多
关键词 椰壳渣 活化 高比表面积活性
下载PDF
高比表面积活性炭(HSAAC)对水中镉(Ⅱ)吸附性能的研究 被引量:2
20
作者 邓益群 方晖 彭凤仙 《环境科学与管理》 CAS 2007年第2期48-50,共3页
以石油焦基为原料,采用KOH活化法制取高比表面积活性炭。考察了高比表面积活性炭吸附水中Cd(Ⅱ)时,pH值、Cd(Ⅱ)浓度、吸附时间和活性炭用量等因素对Cd(Ⅱ)吸附量和水中Cd(Ⅱ)残余浓度的影响。实验结果表明高比表面积活性炭在适宜条件下... 以石油焦基为原料,采用KOH活化法制取高比表面积活性炭。考察了高比表面积活性炭吸附水中Cd(Ⅱ)时,pH值、Cd(Ⅱ)浓度、吸附时间和活性炭用量等因素对Cd(Ⅱ)吸附量和水中Cd(Ⅱ)残余浓度的影响。实验结果表明高比表面积活性炭在适宜条件下对Cd(Ⅱ)具有较大的吸附量和良好的再生效果。为HSAAC在废水中的实际应用提供了理论依据。 展开更多
关键词 高比表面积活性 Cd(Ⅱ) 吸附
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部