A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed t...A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.展开更多
Based on the characteristics of the domestic sewage in rural district,four sewage treatment methods were analyzed.The results found that the optimum method was to process the domestic sewage on the spot,and it should ...Based on the characteristics of the domestic sewage in rural district,four sewage treatment methods were analyzed.The results found that the optimum method was to process the domestic sewage on the spot,and it should be popularized and applied in rural area.展开更多
The paper introduces the research progress in an emergency decision support system for marine pollution (EDSS) in China seas and elaborates on the possible role of the Neutron Activation Analysis (NAA) method ther...The paper introduces the research progress in an emergency decision support system for marine pollution (EDSS) in China seas and elaborates on the possible role of the Neutron Activation Analysis (NAA) method therein. To deal with the increasingly grave situation of offshore pollution, the EDSS for China seas has been researching and developing. Based on the prediction and analysis of the ocean three-dimensional current field, this system makes an inference on the possible path of diffusion and influencing area of marine pollutants and possible location of pollution source, and in combination with the environmentally sensitive information related to the technical integration of GIS, it puts forward the decision, making support for minimizing the hazard caused by pollutants. This system has been operationalized and running for many years on the Bohai and Huanghai seas' Marine Pollutants Prediction and Early-Warning, and it has achieved successful experience for many times in the emergencies of China's coastal pollution accidents. At present, the environmental guarantee system directed against heavy metals and radioactive pollutants is in the experimental stage. As the NAA method is especially applicable to the detection of part of heavy metals and radioactive substances, it is of very important practical value for the new system to realize the monitoring, prediction and early-warning of ocean heavy metals and radioactive pollutants.展开更多
[Objective] This study aimed to identify the in vitro antibacterial activity of golden buckwheat extract and investigate the therapeutic effect of its preparation on mycoplasma infection. [Method] Through measuring th...[Objective] This study aimed to identify the in vitro antibacterial activity of golden buckwheat extract and investigate the therapeutic effect of its preparation on mycoplasma infection. [Method] Through measuring the minimum inhibitory concentra-tion, the in vitro antibacterial activity of golden buckwheat water extract was deter-mined; meanwhile, the therapeutic effect of golden buckwheat oral solution on my-coplasma infection was determined by artificial y infecting chickens with Mycoplasma gal isepticum culture. [Results] The golden buckwheat water extract had obvious in-hibitory effects against Pseudomonas aeruginosa and Escherichia coli, and a certain inhibitory effect on Salmonel a and Staphylococcus aureus; administration of golden buckwheat oral solution at the dose of 0.5%-1.0% continuously for 5 d had a good therapeutic effect against mycoplasma infection. [Conclusion] The study provides sci-entific bases for further study on the antibacterial activity of golden buckwheat and its application.展开更多
In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using...In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using thiourea, AgNO3 and tetrabutyl titanate as precursors and Pluronic P123 (EO20PO70EO20) as template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The microcrystal of the photocatalysts consisted of anatase phase and was approximately present in the form of spherical particle. The photocatalytic performance was studied by photodegradation methyl orange (MO) in water under UV and visible light irradiation. The calcination temperature and the doping content influenced the photoactivity. In addition, the possibility of cyclic usage of co-doped mesoporous titania was also confirmed, the photocatalytic activity of mesoporous titania remained above 89% of that of the fresh sample after being used four times. It was shown that the co-doped mesoporous titania could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. The synergistic effect of sulfur and silver co-doping played an important role in improving the photocatalytic activity.展开更多
Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigat...Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650℃ under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60℃),initial dye concentration(0–200 mg·L^-1),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H2SO4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl2.The adsorption capacity of TSAC was found to be 11.98 mg·g^-1(RB5)and 13.27 mg·g^-1(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.展开更多
Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-se...Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-sence of electrolyte. The effects of the characteristics of the cationic agent and the pretreatment conditions on dye-ability of reactive dye were investigated. The results showed that the fixation and K/S values of the reactive dyes on the cationic cotton were improved compared with those on the untreated one in the presence of salt. Tests on fast-ness properties of the dyed cotton and fabric quality of the pretreated cotton were carried out and the results showed that wash and rub fastness of the salt-free dyeing were both satisfactory. And anti-crease property,tensile and tear strength,and handling of the cationic cotton were also good compared with that of the untreated one.展开更多
Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron...Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbHLH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FITwith either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FRO2 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38, AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.展开更多
AIM:To identify factors related to serious postoperative bacterial and fungal infections in the first 3 mo after living donor liver transplantation(LDLT).METHODS:In the present study,the data of 207 patients from 2004...AIM:To identify factors related to serious postoperative bacterial and fungal infections in the first 3 mo after living donor liver transplantation(LDLT).METHODS:In the present study,the data of 207 patients from 2004 to 2011 were reviewed.The pre-,intra-and post-operative factors were statistically analyzed.All transplantations were approved by the ethics committee of West China Hospital,Sichuan University.Patients with definitely preoperative infections and infections within 48 h after transplantation were excluded from current study.All potential risk factors were analyzed using univariate analyses.Factors significant at a P < 0.10 in the univariate analyses were involved in the multivariate analyses.The diagnostic accuracy of the identified risk factors was evaluated using receiver operating curve.RESULTS:The serious bacterial and fungal infection rates were 14.01% and 4.35% respectively.Enterococcus faecium was the predominant bacterial pathogen,whereas Candida albicans was the most common fungal pathogen.Lung was the most common infection site for both bacterial and fungal infections.Recipient age older than 45 years,preoperative hyponatremia,intensive care unit stay longer than 9 d,postoperative bile leak and severe hyperglycemia were independent risk factors for postoperative bacterial infection.Massive red blood cells transfusion and postoperative bacterial infection may be related to postoperative fungal infection.CONCLUSION:Predictive risk factors for bacterial and fungal infections were indentified in current study.Pre-,intra-and post-operative factors can cause postoperative bacterial and fungal infections after LDLT.展开更多
NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (...NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAFl-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bonafide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAFl-mediated signaling in response to both pathogen and abiotic stresses.展开更多
Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride ...Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.展开更多
Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against I l specie...Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against I l species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml.展开更多
Nitrogen doping of activated carbon (AC) was performed by annealing both in ammonia and nitric oxide, and the activities of the modified carbons for NO reduction were studied in the presence of oxygen. Results show ...Nitrogen doping of activated carbon (AC) was performed by annealing both in ammonia and nitric oxide, and the activities of the modified carbons for NO reduction were studied in the presence of oxygen. Results show that nitrogen atoms were incorporated into the carbons, mostly in the form of pyridinic nitrogen or pyridonic nitrogen. The effect of nitrogen doping on the activities of the carbons can be ignored when oxygen is absent, but the doped carbons show desirable activities in the low temperature regime (≤500 ℃) when oxygen is present. The role of the surface nitrogen species is suggested to promote the formation of NO2 in the presence of oxygen, and NO2 can facilitate decomposition of the surface oxygen species in the low temperature regime展开更多
A novel bioactive foam emulsion bioreactor for benzene,toluene and xylene(BTX)contaminated air streams treatment has been developed.The gas-liquid interfacial area by biocompatible foam and driving force for mass tran...A novel bioactive foam emulsion bioreactor for benzene,toluene and xylene(BTX)contaminated air streams treatment has been developed.The gas-liquid interfacial area by biocompatible foam and driving force for mass transfer by a water immiscible organic phase were increased in this reactor.The effect of several parameters such as gas residence time,oxygen content,and organic phase concentration on bioreactor performance was studied. Experimental results showed an average elimination capacity(EC)of 220 g·m3·h -1with removal efficiency(RE) of 89.59%for BTX inlet concentration of 1 g·m3at 15 s gas residence time in the bioreactor.The statistical developed model predicted that the maximum elimination capacity of the reactor for BTX could be reached to 423.45 g·m3·h -1.Continues operation of the bioreactor with high EC and RE was demonstrated by optimizing the operational parameters of the bioreactor.Overall the results suggest that the bioreactor developed can be very effective systems to treat BTX vapors.展开更多
Preparation of Fe^2+ chelate of fish protein hydrolysate (Fe-FPH) obtained from low value fish proteins was introduced and its bioactivity was studied by compound enzymolysis. The optimum conditions for hydrolysate...Preparation of Fe^2+ chelate of fish protein hydrolysate (Fe-FPH) obtained from low value fish proteins was introduced and its bioactivity was studied by compound enzymolysis. The optimum conditions for hydrolysate chelating Fe^2+ are DH (degree of hydrolysis) at 5%, pH 7.0, 20℃ and 15 min chelating time for FM (material not being defatted). Four types of Fe-FPH including CA (deposit after chelating), CB (deposit in 50% of absolute ethanol solution), CC (suspended deposit in 80% of absolute ethanol solution), and CD (bottom deposit in 80% of absolute ethanol solution) were fractionated with absolute ethanol from FM. Structural analysis through infra-red spectrum revealed that Fe^2+ was combined strongly with amino-group and carboxyl-group in each chelate and each Fe^2+ could form two five-member ring structures. All of the four chelates were shown more significant antioxidative activity and can be used as natural hydrophobic and hydrophilic antioxidant. Among all the chelates, the CB possesses the most effective antioxidative activity at 92% as high as that of a-tocopherol. Among all Fe-FPHs, only CD showed the most effective antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis and can be used as natural antibacterial. It provides a more effective way for utilization of low value fish proteins and key information of Fe-FPH as additive in food industry.展开更多
基金Project(41201492)supported by the National Natural Science Foundation of China
文摘A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.
基金Supported by the National Eleventh Five-year Water Major Project(2008ZX07101-007-01)Soft Science Research Project of Jiangsu Province(BR2009003)~~
文摘Based on the characteristics of the domestic sewage in rural district,four sewage treatment methods were analyzed.The results found that the optimum method was to process the domestic sewage on the spot,and it should be popularized and applied in rural area.
基金supported by the National Natural Science Foundation of China(41206013,41376014,41430963)the Public Science and Technology Research Funds Projects of Ocean (201205018)+5 种基金Key Marine Science Foundation of the State Oceanic Administration of China for Young Scholar(2013203,2012202,2012223)National Sci-Tech Support Plan(2014BAB12B02)Tianjin Sci-Tech Support Plan(14ZCZDSF00012)POL Visiting Fellowship Program (Song Jun)China Scholarship Council ([2008]3019[2012]3013)
文摘The paper introduces the research progress in an emergency decision support system for marine pollution (EDSS) in China seas and elaborates on the possible role of the Neutron Activation Analysis (NAA) method therein. To deal with the increasingly grave situation of offshore pollution, the EDSS for China seas has been researching and developing. Based on the prediction and analysis of the ocean three-dimensional current field, this system makes an inference on the possible path of diffusion and influencing area of marine pollutants and possible location of pollution source, and in combination with the environmentally sensitive information related to the technical integration of GIS, it puts forward the decision, making support for minimizing the hazard caused by pollutants. This system has been operationalized and running for many years on the Bohai and Huanghai seas' Marine Pollutants Prediction and Early-Warning, and it has achieved successful experience for many times in the emergencies of China's coastal pollution accidents. At present, the environmental guarantee system directed against heavy metals and radioactive pollutants is in the experimental stage. As the NAA method is especially applicable to the detection of part of heavy metals and radioactive substances, it is of very important practical value for the new system to realize the monitoring, prediction and early-warning of ocean heavy metals and radioactive pollutants.
基金Supported by the Special Project of Department of Science and Technology of Hebei Province(08820412D)the Special Project of Qinhuangdao Municipal Bureau of Science and Technology[Qinkeji(2003)30-35]+1 种基金the Special Project of Shijiazhuang Municipal Bureau of Science and Technology(07150193A)the Scientific Research Innovation Team Project of Hebei Normal University of Science and Technology(TD201201)~~
文摘[Objective] This study aimed to identify the in vitro antibacterial activity of golden buckwheat extract and investigate the therapeutic effect of its preparation on mycoplasma infection. [Method] Through measuring the minimum inhibitory concentra-tion, the in vitro antibacterial activity of golden buckwheat water extract was deter-mined; meanwhile, the therapeutic effect of golden buckwheat oral solution on my-coplasma infection was determined by artificial y infecting chickens with Mycoplasma gal isepticum culture. [Results] The golden buckwheat water extract had obvious in-hibitory effects against Pseudomonas aeruginosa and Escherichia coli, and a certain inhibitory effect on Salmonel a and Staphylococcus aureus; administration of golden buckwheat oral solution at the dose of 0.5%-1.0% continuously for 5 d had a good therapeutic effect against mycoplasma infection. [Conclusion] The study provides sci-entific bases for further study on the antibacterial activity of golden buckwheat and its application.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.41373127) and the Liaoning Provincial Natural Science Foundation of China (No.2013020121).
文摘In order to improve the photocatalytic performance of mesoporous titania under visible light, a series of photocatalysts of S and Ag co-doped mesoporous titania have been successfully prepared by template method using thiourea, AgNO3 and tetrabutyl titanate as precursors and Pluronic P123 (EO20PO70EO20) as template. Scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, and UV-visible spectroscopy (UV-Vis) were employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The microcrystal of the photocatalysts consisted of anatase phase and was approximately present in the form of spherical particle. The photocatalytic performance was studied by photodegradation methyl orange (MO) in water under UV and visible light irradiation. The calcination temperature and the doping content influenced the photoactivity. In addition, the possibility of cyclic usage of co-doped mesoporous titania was also confirmed, the photocatalytic activity of mesoporous titania remained above 89% of that of the fresh sample after being used four times. It was shown that the co-doped mesoporous titania could be activated by visible light and could thus be potentially applied for the treatment of water contaminated by organic pollutants. The synergistic effect of sulfur and silver co-doping played an important role in improving the photocatalytic activity.
基金the Ministry of Higher Education,Malaysia(MOHE)for the financial supports received under University Grant(08H05)and Fundamental Research Grant Scheme(4F872)Universiti Teknologi Malaysia for the GUP grant No.17H65the support to the main author,Wong Syie Luing,in the form of Post-Doctoral Fellowship Scheme for the project"Catalytic Cracking of Low Density Polyethylene Waste to Liquid Fuels in Fixed Bed Reactor"
文摘Adsorption is an important process in wastewater treatment,and conversion of waste materials to adsorbent offers a solution to high material cost related to the use of commercial activated carbon.This study investigated the adsorption behaviour of Reactive Black 5(RB5)and methylene blue(MB)onto activated carbon produced from textile sludge(TSAC).The activated carbon was synthesized through chemical activation of precursor followed with carbonization at 650℃ under nitrogen flow.Effects of time(0–200 min),pH(2–10),temperature(25–60℃),initial dye concentration(0–200 mg·L^-1),and adsorbent dosage(0.01–0.15 g)on dye removal efficiency were investigated.Preliminary screening revealed that TSAC synthesized via H2SO4activation showed higher adsorption behaviour than TSAC activated by KCl and ZnCl2.The adsorption capacity of TSAC was found to be 11.98 mg·g^-1(RB5)and 13.27 mg·g^-1(MB),and is dependent on adsorption time and initial dye concentration.The adsorption data for both dyes were well fitted to Freundlich isotherm model which explains the heterogeneous nature of TSAC surface.The dye adsorption obeyed pseudo-second order kinetic model,thus chemisorption was the controlling step.This study reveals potential of textile sludge in removal of dyes from aqueous solution,and further studies are required to establish the applicability of the synthesized adsorbent for the treatment of waste water containing toxic dyes from textile industry.
基金Supported by the National Science Foundation for Distinguished Young Scholar of China(20525620) the National Natural Science Foundation of China(20806013) the Program for Changjiang Scholar and Innovative Research Team in University(IRT 0711)
文摘Tertiary amine cationic polyacrylamide with high cationization degree was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The obtained cationic cotton was dyed with reactive dyes in the ab-sence of electrolyte. The effects of the characteristics of the cationic agent and the pretreatment conditions on dye-ability of reactive dye were investigated. The results showed that the fixation and K/S values of the reactive dyes on the cationic cotton were improved compared with those on the untreated one in the presence of salt. Tests on fast-ness properties of the dyed cotton and fabric quality of the pretreated cotton were carried out and the results showed that wash and rub fastness of the salt-free dyeing were both satisfactory. And anti-crease property,tensile and tear strength,and handling of the cationic cotton were also good compared with that of the untreated one.
基金The authors thank ProfMary Lou Guerinot (Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire) for providing IRT1 peptide antibody and for the critical reading of the manuscript. We are also grateful to Drs Zhentao Lin and Yongfu Fu (Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing) for providing the BiFC assay system and technical supporting. This work was supported by the National Natural Science Foundation of China (Grant nos, 30530460 and 30521001) and the Ministry of Science and Technology of China (Grant nos, 2005cb20904 and 2006AA 10A 105) and Chinese Academy of Sciences (Grant no. KSCX2-YW-N- 001) as well as by the Harvest Plus-China Program.
文摘Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbHLH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FITwith either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FRO2 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38, AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.
基金Supported by The National Science and Technology Major Project of China,No.2012ZX10002-016 and 2012ZX10002017-006
文摘AIM:To identify factors related to serious postoperative bacterial and fungal infections in the first 3 mo after living donor liver transplantation(LDLT).METHODS:In the present study,the data of 207 patients from 2004 to 2011 were reviewed.The pre-,intra-and post-operative factors were statistically analyzed.All transplantations were approved by the ethics committee of West China Hospital,Sichuan University.Patients with definitely preoperative infections and infections within 48 h after transplantation were excluded from current study.All potential risk factors were analyzed using univariate analyses.Factors significant at a P < 0.10 in the univariate analyses were involved in the multivariate analyses.The diagnostic accuracy of the identified risk factors was evaluated using receiver operating curve.RESULTS:The serious bacterial and fungal infection rates were 14.01% and 4.35% respectively.Enterococcus faecium was the predominant bacterial pathogen,whereas Candida albicans was the most common fungal pathogen.Lung was the most common infection site for both bacterial and fungal infections.Recipient age older than 45 years,preoperative hyponatremia,intensive care unit stay longer than 9 d,postoperative bile leak and severe hyperglycemia were independent risk factors for postoperative bacterial infection.Massive red blood cells transfusion and postoperative bacterial infection may be related to postoperative fungal infection.CONCLUSION:Predictive risk factors for bacterial and fungal infections were indentified in current study.Pre-,intra-and post-operative factors can cause postoperative bacterial and fungal infections after LDLT.
基金We would like to thank Dr Nam-Hai Chua (Rockefeller Univer- sity) for kindly providing the pBA002Myc vector and the Arabi- dopsis Biological Resource Center (ABRC), Ohio State University for providing ToDNA insertion lines. This work was supported by grants from National Natural Science Foundation of China (No. 30530400/90717006/30670195) to Q Xie and Y Wu, the Chinese Academy of Science (KSCX2-YW-N-010 and CXTD-S2005-2), and the (iuangdong Natural Science Foundation, China (No. 5300648) to Z Deng.
文摘NAC family genes encode plant-specific transcription factors involved in diverse biological processes. In this study, the Arabidopsis NAC gene ATAF1 was found to be induced by drought, high-salinity, abscisic acid (ABA), methyl jasmonate, mechanical wounding, and Botrytis cinerea infection. Significant induction of ATAF1 was found in an ABA-deficient mutant aba2 subjected to drought or high salinity, revealing an ABA-independent mechanism of expression. Arabidopsis ATAFl-overexpression lines displayed many altered phenotypes, including dwarfism and short primary roots. Furthermore, in vivo experiments indicate that ATAF1 is a bonafide regulator modulating plant responses to many abiotic stresses and necrotrophic-pathogen infection. Overexpression of ATAF1 in Arabidopsis increased plant sensitivity to ABA, salt, and oxidative stresses. Especially, ATAF1 overexpression plants, but not mutant lines, showed remarkably enhanced plant tolerance to drought. Additionally, ATAF1 overexpression enhanced plant susceptibility to the necrotrophic pathogen B. cinerea, but did not alter disease symptoms caused by avirulent or virulent strains of P. syringae pv tomato DC3000. Transgenic plants overexpressing ATAF1 were hypersensitive to oxidative stress, suggesting that reactive oxygen intermediates may be related to ATAFl-mediated signaling in response to both pathogen and abiotic stresses.
基金Supported by the National Natural Science Foundation of China(2137604221421005)+2 种基金the National Key Technology R&D Program(2013BAF08B06)Innovative Research Team of Ministry of Education of the People's Republic of China(IRT-13R06)Dalian University of Technology(DUT2013TB07)
文摘Novel cationic cotton fabrics were prepared by an efficient and simple one-step pad–dry–bake pretreatment process with betaine as cationic reagent. Ester bonds formed between cotton fibers and betaine hydrochloride were proved by Fourier transformed infrared attenuated total reflection(FTIR-ATR) spectra. Moreover, the properties of the cationic fabrics, including X-ray Diffraction(XRD), tensile strength and whiteness and yellowness index,were investigated in comparison with that of the untreated ones. The cationic fabrics were applied in salt-free dyeing of C.I. Reactive Red 195, C.I. Reactive Yellow 145 and C.I. Reactive Blue 19. Different dye fixation processes were applied and compared for untreated and cationic cotton. Dye fixation and color fastness properties of the dyes were tested, and the results presented that dye fixation on the cationic fabrics in the absence of salt was improved with satisfactory light fastness property and applicable wash and rub fastnesses.
文摘Antimicrobial activity of organic and aqueous extracts from fruits, leaves and roots of Tribulus terrestris L., an Iraqi medicinal plant used as urinary anti-infective in folk medicine, was examined against I l species of pathogenic and non-pathogenic microorganisms: Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Corynebacterium diphtheriae, Escherichia coli, Proteus vulgaris, Serratia marcescens, Salmonella typhimurium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans using microdilution method in 96 multiwell microtiter plates. All the extracts from the different parts of the plant showed antimicrobial activity against most tested microorganisms. The most active extract against both Gram-negative and Gram-positive bacteria was ethanol extract from the fruits with a minimal inhibitory concentration (MIC) value of 0.15 mg/ml against B. subtilis, B. cereus, P. vulgaris and C. diphtheriae. In addition, the same extract from the same plant part demonstrated the strongest antifungal activity against C. albicans with an MIC value of 0.15 mg/ml.
文摘Nitrogen doping of activated carbon (AC) was performed by annealing both in ammonia and nitric oxide, and the activities of the modified carbons for NO reduction were studied in the presence of oxygen. Results show that nitrogen atoms were incorporated into the carbons, mostly in the form of pyridinic nitrogen or pyridonic nitrogen. The effect of nitrogen doping on the activities of the carbons can be ignored when oxygen is absent, but the doped carbons show desirable activities in the low temperature regime (≤500 ℃) when oxygen is present. The role of the surface nitrogen species is suggested to promote the formation of NO2 in the presence of oxygen, and NO2 can facilitate decomposition of the surface oxygen species in the low temperature regime
文摘A novel bioactive foam emulsion bioreactor for benzene,toluene and xylene(BTX)contaminated air streams treatment has been developed.The gas-liquid interfacial area by biocompatible foam and driving force for mass transfer by a water immiscible organic phase were increased in this reactor.The effect of several parameters such as gas residence time,oxygen content,and organic phase concentration on bioreactor performance was studied. Experimental results showed an average elimination capacity(EC)of 220 g·m3·h -1with removal efficiency(RE) of 89.59%for BTX inlet concentration of 1 g·m3at 15 s gas residence time in the bioreactor.The statistical developed model predicted that the maximum elimination capacity of the reactor for BTX could be reached to 423.45 g·m3·h -1.Continues operation of the bioreactor with high EC and RE was demonstrated by optimizing the operational parameters of the bioreactor.Overall the results suggest that the bioreactor developed can be very effective systems to treat BTX vapors.
基金Supported by National Natural Science Foundation of China (No.30371123)Science and Technology Department of Zhejiang Province (No. 2007C12013)
文摘Preparation of Fe^2+ chelate of fish protein hydrolysate (Fe-FPH) obtained from low value fish proteins was introduced and its bioactivity was studied by compound enzymolysis. The optimum conditions for hydrolysate chelating Fe^2+ are DH (degree of hydrolysis) at 5%, pH 7.0, 20℃ and 15 min chelating time for FM (material not being defatted). Four types of Fe-FPH including CA (deposit after chelating), CB (deposit in 50% of absolute ethanol solution), CC (suspended deposit in 80% of absolute ethanol solution), and CD (bottom deposit in 80% of absolute ethanol solution) were fractionated with absolute ethanol from FM. Structural analysis through infra-red spectrum revealed that Fe^2+ was combined strongly with amino-group and carboxyl-group in each chelate and each Fe^2+ could form two five-member ring structures. All of the four chelates were shown more significant antioxidative activity and can be used as natural hydrophobic and hydrophilic antioxidant. Among all the chelates, the CB possesses the most effective antioxidative activity at 92% as high as that of a-tocopherol. Among all Fe-FPHs, only CD showed the most effective antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis and can be used as natural antibacterial. It provides a more effective way for utilization of low value fish proteins and key information of Fe-FPH as additive in food industry.