Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn...Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.展开更多
A factorial study was conducted to determine the effects of salinity (constant (SO) and fluctuating (S10)) and isoenergetic diet of different protein/carbohydrate ratios (P/C: 4.1, 1.9, 1.0 and 0.6) on the su...A factorial study was conducted to determine the effects of salinity (constant (SO) and fluctuating (S10)) and isoenergetic diet of different protein/carbohydrate ratios (P/C: 4.1, 1.9, 1.0 and 0.6) on the survival and growth of juvenile Litopenaeus vannamei. The experiment lasted for 35 days. The results showed that I) At S0 and S10, specific growth rate and apparent digestibility coefficient exhibited decreasing trend, while food conversion ratio exhibited increasing trend, with decreasing P/C ratio. At SO, food consumption and specific growth rate of the shrimp fed 4.1 P/C were significantly higher than those fed 1.0 and 0.6 P/C, whereas at S10, no significant differences were detected among different treatments; II) At 4.1 and 1.9 P/C, food consumption and specific growth rate were higher in the shrimp maintained at SO as compared with those at S10, while at 1.0 and 0.6 P/C, an inverse trend was observed. Among four P/C ratios, food conversion ratio of the shrimp at SO was the lowest.展开更多
The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predi...The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.展开更多
Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tio...Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.展开更多
LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, includ...LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AOT), rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar-like particles with lengths of-3 μm and widths of-1μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89% after 30 min of sonocatalysis. The effects of inorganic anions such as CI-, NO3-, SO42-, PO43-, and HCO3- on the sonocatalysis efficiency were investigated. Hydroxyl radicals (·OH) detected by fiuorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic-irradiated LuFeO3 particles. The addition of ethanol, which acts as a· OH scavenger, leads to quenching of "OH radicals and a simultaneous decrease in the dye degrada- tion. This suggests that "OH is the dominant active species responsible for the dye degradation.展开更多
Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as acceler...Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as accelerants for hydrate formation, on induction time. We experimented with three types of a Tween solution with equal concentrations of 0.001 mol/L (T40, T40/T80 (1:1), T40/T80 (4:1)). By means of visual experimental equipment, developed by us, we measured generalized induction time using a Direct Observation Method. The experimental data were analyzed combined with a mass transfer model and a hydrate crystal nuclei growth model. Our major conclusions are as follows: 1) solubilization of surfactants produces supersaturated gas molecules, which promotes the mass transfer from a bulk phase to hydrates and provides the driving force for the complexation between host molecules (water) and guest molecules in a gas hydrate formation process; 2) when the solution of the surfactant concentration exceeds the critical micelle concentration (CMC), the surfactant in an aqueous solution will transform to micelles. Most of the gas molecules are bound to form clusters with water molecules, which promotes the formation of crystal nuclei of gas hydrates; 3) the surfactant T40 proved to have more notable effects on the promotion of crystal nuclei formation and on shortening the induction time, compared with T40/T80 (1:1) and T40/T80 (4:1).展开更多
The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test,zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles sh...The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test,zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles show the self-aggregation of edge-face in acidic media,the aggregation of edge-face and edge-edge in neutral media,and the dispersion in alkaline media due to electrostatic repulsion. In the presence of the dodecylammonium acetate cationic surfactant and in neutral and alkaline suspension,the hydrophobic aggregation of face-face is demonstrated. The zeta potential of kaolinite increases with increasing the concentration of cationic surfactant. The small and loose aggregation at a low concentration but big and tight aggregation at a high concentration is presented. At pH=7 alkyl quarterly amine salt CTAB has the best hydrophobic aggregation among three cationic surfactants,namely,dodecylammonium acetate,alkyl quarterly amine salts 1227 and CTAB.展开更多
Despite the intention of minimum wage policy to maintain the living standards of low-income groups in the formal sector, this paper has found that the actual result of this policy produces the "big push" impact on C...Despite the intention of minimum wage policy to maintain the living standards of low-income groups in the formal sector, this paper has found that the actual result of this policy produces the "big push" impact on China's economy under certain conditions, i.e. it is conducive to achieving the equilibrium of high wage, high consumption and formalization. The result shows that the elasticity of income growth from raising the minimum wage standard is greater for formal sector employees than for informal sector employees and is characterized by a U-shaped pattern in terms of quantiles. Thus, minimum wage hikes have widened wage gaps between and within sectors. Rising minimum wage standards greatly stimulate consumption with each 10% increase expected to bring about an additional urban household consumption of about 1.167 billion yuan in the surveyed four provinces. With local minimum wage hikes, the formal sector of wholesale and retail, hotel and catering services expands and the informal sector contracts, while the real estate sector experiences a "reverse formalization" trend. Based on the "big push theory", this paper concludes that against the backdrop of extensive, frequent and substantial minimum wage hikes, demand and sector TFP growth are the major causes of sector heterogeneity.展开更多
We deformed AZ31 magnesium alloys by cold forging and cold compression process,and investigated their static recrystallization kinetics during the annealing process.The results demonstrate that the relationship betwee...We deformed AZ31 magnesium alloys by cold forging and cold compression process,and investigated their static recrystallization kinetics during the annealing process.The results demonstrate that the relationship between the annealing time and the fraction of recrystal grains can be described by the Johnson-Mehl-Avrami-Kolmogorov(JMAK)equation.Based on the kinetics analysis,we calculated that the activation energy of recrystallization by cold forging and cold compression were about 53.5 kJ/mol and 85.0 kJ/mol,respectively.The activation energy of cold compression process was higher than that of the cold forging process because the latter had high-rate deformation,which caused more energy storage during deformation.展开更多
Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-ste...Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.展开更多
Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) e...Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P < 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.展开更多
We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of sp...We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.展开更多
Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experime...Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.展开更多
The UN Food and Agriculture Organization(FAO)awarded China on June 7,2015 for its share in reducing the global proportion of people suffering from hunger.China has witnessed remarkable achievements over the past thr...The UN Food and Agriculture Organization(FAO)awarded China on June 7,2015 for its share in reducing the global proportion of people suffering from hunger.China has witnessed remarkable achievements over the past three decades since the launch of its reform and opening-up policy.Rapid development of comprehensive national strength and a higher standard of living have laid a solid foundation for the country to assume more international responsibilities in accordance with its ability and world status.展开更多
Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent ...Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.展开更多
Pyropia haitanensis, a commercially important species, was cultured at two CO2 concentrations (390× 10^-6 and 700× 10^-6 (parts per million)) and at low and high nutrient levels, to explore the effect of...Pyropia haitanensis, a commercially important species, was cultured at two CO2 concentrations (390× 10^-6 and 700× 10^-6 (parts per million)) and at low and high nutrient levels, to explore the effect of elevated CO2 on the species under nutrient enrichment. Results show that in CO2-enriched thalli, relative growth rate (RGR) was enhanced under nutrient enrichment. Elevated CO2 decreased phycobiliprotein (PB) contents, but increased the contents of soluble carbohydrates. Nutrient enrichment increased the contents of chlorophyll a (Chl a) and PB, while soluble carbohydrate content decreased. CO2 enrichment enhanced the relative maximum electronic transport rate and light saturation point. In nutrient-enriched thalli the activity of nitrate reductase (NRA) increased under elevated CO2. An instantaneous pH change in seawater (from 8.1 to 9.6) resulted in reduction of NRA, and the thalli grown under both elevated CO2 and nutrient enrichment exhibited less pronounced reduction than in algae grown at the ambient CO2. The thermal optima of NRA under elevated CO2 and/or nutrient enrichment shifted to a lower temperature (10-15 ℃) compared to that in ambient conditions (20℃). We propose that accelerated photosynthesis could result in growth increment. N assimilation remained high in acidified seawater and reflected increased temperature sensitivity in response to elevated CO_2 and eutrophication.展开更多
The equilibrium uptake of phenol and lead(II) ions, both singly and in combination, by granular activated carbon was studied in a batch system. The initial pH, temperature, mixing speed and contact time were fixed a...The equilibrium uptake of phenol and lead(II) ions, both singly and in combination, by granular activated carbon was studied in a batch system. The initial pH, temperature, mixing speed and contact time were fixed at 4, 30 ℃, 250 rpm and 6 hrs respectively. Adsorption isotherms were developed for both the single and binary component systems and expressed by ten models for single and four models for binary systems and model parameters were estimated by the non-linear regression method using STATISTICA version-6 and EXCEEL-2007 software. The maximum loading capacity (qm) of the phenol was 66.8234, 60.4823 mg/g and 37.0370, 13.0988 mg/g for lead in single and binary systems respectively. Desorption experiments indicate that the desorption efficiency with 0.1 M NaOH, 0.1 M HCI solution reaches 97.35%, 98% for phenol and lead respectively. There was only 3.58%, 4.93% decrease in removal efficiency for phenol and lead respectively when used regenerated GAC for one cycle.展开更多
This paper is aimed at verifying utilization possibilities of alkaline modified coal fly ash as cement replacement in the concrete. The influence of alkaline activated coal fly ash originating from Slovakian power pla...This paper is aimed at verifying utilization possibilities of alkaline modified coal fly ash as cement replacement in the concrete. The influence of alkaline activated coal fly ash originating from Slovakian power plant in Novsky (Si/Al = 3,1) as a partial cement replacement in concrete on compressive strength of hardened composites after 28 and 90 days was investigated. Alkaline activation of coal fly ash was realized in an autoclave at 130 ℃ and pressure of 160 kPa during 5 hours and in a reactor under normal conditions (equal temperature during 36 hours) at solid/liquid ratio of 0.5. Coal fly ash/cement mixtures were prepared with 25 % cement replacement by starting and modified coal fly ash and given in forms. Compressive strengths of composites after 28 and 90 days of hardening were compared to referential composite without coal fly ash and evaluated according to the standard of STN EN 450 by the value of relative strength KR (compressive strength of coal fly ash/cement composite to compressive strength of comparative concrete). The final compressive strengths of hardened composites based on alkaline activated coal fly ash reached values in the range of 6 up to 50 MPa. In the set of experimental composites based on alkaline activated coal fly ashes, the highest value of relative strength after 28- and 90- days of hardening reached composite with cement replacement by coal fly ash zeolitized in autoclave (105% of compressive strength of referential sample), what is connected with formation of zeolitic phases on surface of coal fly ash particles. The achieved results confirm that alkaline activation of coal fly ash in an autoclave under observed conditions can be successfully used as a partial cement replacement in concrete of C20/25 and C25/30 in accordance with requirements of standards (STN EN 450 and STN EN 206).展开更多
基金Project(JPPT-115-168)supported by the National Key Science and Technological Project of ChinaProject(51101171)supported by the National Natural Science Foundation of China
文摘Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.
基金funded by National Key Project of Scientific and Technical Supporting Programs funded by Ministry of Science & Technology of China (Grant No. 2006BAD09A01, 2006BAD09A06)Jiangsu Provincial Science Foundation for Talent Youths (Grant No. 2006548) Open Fund of Jiangsu Key Laboratory of Marine Biotechnology (Grant No. 2006HS017)
文摘A factorial study was conducted to determine the effects of salinity (constant (SO) and fluctuating (S10)) and isoenergetic diet of different protein/carbohydrate ratios (P/C: 4.1, 1.9, 1.0 and 0.6) on the survival and growth of juvenile Litopenaeus vannamei. The experiment lasted for 35 days. The results showed that I) At S0 and S10, specific growth rate and apparent digestibility coefficient exhibited decreasing trend, while food conversion ratio exhibited increasing trend, with decreasing P/C ratio. At SO, food consumption and specific growth rate of the shrimp fed 4.1 P/C were significantly higher than those fed 1.0 and 0.6 P/C, whereas at S10, no significant differences were detected among different treatments; II) At 4.1 and 1.9 P/C, food consumption and specific growth rate were higher in the shrimp maintained at SO as compared with those at S10, while at 1.0 and 0.6 P/C, an inverse trend was observed. Among four P/C ratios, food conversion ratio of the shrimp at SO was the lowest.
基金the National Natural Science Foundation of China (No. 20276037, No. 20006010).
文摘The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.
文摘Adsorption equilibrium isotherms of benzene in the concentrationrange of 500-4000 mg·m^-3 on two commercial activated carbons wereobtained using long-column method under 30 deg. C and differenthumidity condi- tions. Results show that the benzene and water vaporshave depression effects upon the adsorption of each other and thatthe unfavorable effect of water vapor resembles its single-componentisotherm on activated carbon. A com- petitive adsorption model wasproposed to explore the depression mechanisms of the non-ideal,non-similar binary adsorption systems.
基金supported by the National Natural Science Foundation of China(51262018)the Fundamental Research Funds for Universities of Gansu Province(056003)the Hongliu Outstanding Talents Foundation of Lanzhou University of Technology(J201205)~~
文摘LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AOT), rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar-like particles with lengths of-3 μm and widths of-1μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89% after 30 min of sonocatalysis. The effects of inorganic anions such as CI-, NO3-, SO42-, PO43-, and HCO3- on the sonocatalysis efficiency were investigated. Hydroxyl radicals (·OH) detected by fiuorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic-irradiated LuFeO3 particles. The addition of ethanol, which acts as a· OH scavenger, leads to quenching of "OH radicals and a simultaneous decrease in the dye degrada- tion. This suggests that "OH is the dominant active species responsible for the dye degradation.
基金Projects 50374037 and 50574038 supported by the National Natural Science Foundation of ChinaB2007-10 by the Provincial Natural Science Foundation of Heilongjiang
文摘Acceleration of gas hydrate formation is important in preventing coal and gas outbursts and is based on a hydration mechanism. It becomes therefore necessary to investigate the effect of surfactants, acting as accelerants for hydrate formation, on induction time. We experimented with three types of a Tween solution with equal concentrations of 0.001 mol/L (T40, T40/T80 (1:1), T40/T80 (4:1)). By means of visual experimental equipment, developed by us, we measured generalized induction time using a Direct Observation Method. The experimental data were analyzed combined with a mass transfer model and a hydrate crystal nuclei growth model. Our major conclusions are as follows: 1) solubilization of surfactants produces supersaturated gas molecules, which promotes the mass transfer from a bulk phase to hydrates and provides the driving force for the complexation between host molecules (water) and guest molecules in a gas hydrate formation process; 2) when the solution of the surfactant concentration exceeds the critical micelle concentration (CMC), the surfactant in an aqueous solution will transform to micelles. Most of the gas molecules are bound to form clusters with water molecules, which promotes the formation of crystal nuclei of gas hydrates; 3) the surfactant T40 proved to have more notable effects on the promotion of crystal nuclei formation and on shortening the induction time, compared with T40/T80 (1:1) and T40/T80 (4:1).
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The hydrophobic aggregation of ultrafine kaolinite in cationic surfactant suspension was investigated by sedimentation test,zeta potential measurement and SEM observation. SEM images reveal that kaolinite particles show the self-aggregation of edge-face in acidic media,the aggregation of edge-face and edge-edge in neutral media,and the dispersion in alkaline media due to electrostatic repulsion. In the presence of the dodecylammonium acetate cationic surfactant and in neutral and alkaline suspension,the hydrophobic aggregation of face-face is demonstrated. The zeta potential of kaolinite increases with increasing the concentration of cationic surfactant. The small and loose aggregation at a low concentration but big and tight aggregation at a high concentration is presented. At pH=7 alkyl quarterly amine salt CTAB has the best hydrophobic aggregation among three cationic surfactants,namely,dodecylammonium acetate,alkyl quarterly amine salts 1227 and CTAB.
基金Major project of National Social Sciences Foundation"Characteristics and Policy Orientation Research on the New Normal of China's Economic Growth"(Grant No.15ZDA008)Major project of National Natural Sciences Foundation"Research on the Mechanism and Policy of Promoting Industrial Upgrade in Economic Developed Regions"(Grant No.71333002)
文摘Despite the intention of minimum wage policy to maintain the living standards of low-income groups in the formal sector, this paper has found that the actual result of this policy produces the "big push" impact on China's economy under certain conditions, i.e. it is conducive to achieving the equilibrium of high wage, high consumption and formalization. The result shows that the elasticity of income growth from raising the minimum wage standard is greater for formal sector employees than for informal sector employees and is characterized by a U-shaped pattern in terms of quantiles. Thus, minimum wage hikes have widened wage gaps between and within sectors. Rising minimum wage standards greatly stimulate consumption with each 10% increase expected to bring about an additional urban household consumption of about 1.167 billion yuan in the surveyed four provinces. With local minimum wage hikes, the formal sector of wholesale and retail, hotel and catering services expands and the informal sector contracts, while the real estate sector experiences a "reverse formalization" trend. Based on the "big push theory", this paper concludes that against the backdrop of extensive, frequent and substantial minimum wage hikes, demand and sector TFP growth are the major causes of sector heterogeneity.
基金Funded by the National Basic Research Program of China(973Program)(No.2007CB613700)
文摘We deformed AZ31 magnesium alloys by cold forging and cold compression process,and investigated their static recrystallization kinetics during the annealing process.The results demonstrate that the relationship between the annealing time and the fraction of recrystal grains can be described by the Johnson-Mehl-Avrami-Kolmogorov(JMAK)equation.Based on the kinetics analysis,we calculated that the activation energy of recrystallization by cold forging and cold compression were about 53.5 kJ/mol and 85.0 kJ/mol,respectively.The activation energy of cold compression process was higher than that of the cold forging process because the latter had high-rate deformation,which caused more energy storage during deformation.
基金Supported by the Foundation for the Authors of National Excellent Doctoral Dissertation of China (200345)the National High Technology Research and Development Program of China (2007AA02Z201)the National Basic Research Program of China (2007CB714304)
文摘Nitrile hydratase (NHase) is an important industrial enzyme used for acrylamide production from acrylonitrile.The deactivation kinetics of NHases in free resting cells of Rhodococcus sp.was presented based on a bi-steady state assumption.Effects of hydration temperature,product concentration and substrate concentration on NHase deactivation were investigated experimentally and correlated with a first order deactivation kinetics.The results showed that the hydration temperature and product concentration were major factors governing the deactivation of NHases under substrate-feeding conditions.When acrylamide concentration was higher than 250 g·L1,the deactivation of NHases became serious and the bi-steady state assumption was not applicable.When the hydration temperature was controlled at a relatively higher level such as 28°C,the total deactivation rate constant was about 2.8-fold of that at 20°C.
基金supported by the National Natural Science Foundation of China (Nos. 21071133, 51273184 and 81202399)the Program for Science and Technology of Shandong Province (2011GHY11521)the Natural Science Foundation of Qingdao City (Nos. 11-2-4-1-(9) gch), 12-1-3-52-(1)-nsh and 12-1-4-16-(7)-jch)
文摘Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P < 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.
基金Supported by the Goverment of Malaysia,Intensified Research in Priority Areas(IRPA Project)(No.50258-J3)
文摘We studied the depth distribution of periphyton,growing on inundated dead trees in Kenyir Lake,Malaysia in June 1995.The algal floral composition and structure manifested changes down the depth gradient in terms of species richness,abundance,diversity and cell density.In regression analysis,all these algal attributes were negatively correlated with the depth gradients at P<0.05.In terms of species richness,the bacillariophytes showed dominance over the cyanophytes and chlorophytes;whereas with respect to standing crop,the cyanophytes showed dominance over the bacillariophytes and chlorophytes.The chlorophyll a was higher at the mid and bottom-depths than the surface-depth in both the downstream and upstream sites,which showed that vertical productivity or biomass accumulation was greater in low light irradiance.The product-moment correlation analysis showed that conductivity,turbidity,dissolved oxygen,reactive phosphate and ammonium-nitrogen were highly correlated with the algal assemblage data.However,photosynthetic active radiation(PAR) showed poor correlation with the community data.These observations have cast some light on the autoecological characteristics,habitat preferences and environmental responses of tropical periphytic communities.
文摘Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.
文摘The UN Food and Agriculture Organization(FAO)awarded China on June 7,2015 for its share in reducing the global proportion of people suffering from hunger.China has witnessed remarkable achievements over the past three decades since the launch of its reform and opening-up policy.Rapid development of comprehensive national strength and a higher standard of living have laid a solid foundation for the country to assume more international responsibilities in accordance with its ability and world status.
基金the Iran Nanotechnology Initiative Council for the financial and other supports
文摘Vanadium oxide (VOx) nanostructures, synthesized by hydrothermal treatment using dodecylamine as template, were evaluated for the selective catalytic reduction of NOx with ammonia (NH3-SCR), The effect of solvent type in the reaction mixture (EtOH/(EtOH + H20)) and time of hydrolysis was studied. The obtained materials were characterized by XRD, SEM, TEM and BET, The VOx nanorods (80-120 nm diameter and 1-4 μm length) were synthesized in 25 vol% EtOH/(EtOH + H20) and the open-ended multiwalled VOx nanotube (50-100 nm inner diameter, 110-180 nm outer diameter and 0,5-2 pm length) synthesized in 50 vol% EtOH/(EtOH + H20). VOx nanotuhes performed the superior NH3-SCR activity under a gas hourly space velocity of 12,000 h-1 at low temperature of 250 ~C (NOx conversion of 893g & N2 selectivity of 100%), while most of the developed Vanadia base catalysts are active at high temperature (〉350 ℃). The superior NH3-SCR activity ofVOx nanotubes at low tem- perature is related to nanocrystalline structure, special nanotube morphology as well as high specific surface area.
基金Supported by the National Natural Science Foundation of China(Nos.41276148,41076094)
文摘Pyropia haitanensis, a commercially important species, was cultured at two CO2 concentrations (390× 10^-6 and 700× 10^-6 (parts per million)) and at low and high nutrient levels, to explore the effect of elevated CO2 on the species under nutrient enrichment. Results show that in CO2-enriched thalli, relative growth rate (RGR) was enhanced under nutrient enrichment. Elevated CO2 decreased phycobiliprotein (PB) contents, but increased the contents of soluble carbohydrates. Nutrient enrichment increased the contents of chlorophyll a (Chl a) and PB, while soluble carbohydrate content decreased. CO2 enrichment enhanced the relative maximum electronic transport rate and light saturation point. In nutrient-enriched thalli the activity of nitrate reductase (NRA) increased under elevated CO2. An instantaneous pH change in seawater (from 8.1 to 9.6) resulted in reduction of NRA, and the thalli grown under both elevated CO2 and nutrient enrichment exhibited less pronounced reduction than in algae grown at the ambient CO2. The thermal optima of NRA under elevated CO2 and/or nutrient enrichment shifted to a lower temperature (10-15 ℃) compared to that in ambient conditions (20℃). We propose that accelerated photosynthesis could result in growth increment. N assimilation remained high in acidified seawater and reflected increased temperature sensitivity in response to elevated CO_2 and eutrophication.
文摘The equilibrium uptake of phenol and lead(II) ions, both singly and in combination, by granular activated carbon was studied in a batch system. The initial pH, temperature, mixing speed and contact time were fixed at 4, 30 ℃, 250 rpm and 6 hrs respectively. Adsorption isotherms were developed for both the single and binary component systems and expressed by ten models for single and four models for binary systems and model parameters were estimated by the non-linear regression method using STATISTICA version-6 and EXCEEL-2007 software. The maximum loading capacity (qm) of the phenol was 66.8234, 60.4823 mg/g and 37.0370, 13.0988 mg/g for lead in single and binary systems respectively. Desorption experiments indicate that the desorption efficiency with 0.1 M NaOH, 0.1 M HCI solution reaches 97.35%, 98% for phenol and lead respectively. There was only 3.58%, 4.93% decrease in removal efficiency for phenol and lead respectively when used regenerated GAC for one cycle.
文摘This paper is aimed at verifying utilization possibilities of alkaline modified coal fly ash as cement replacement in the concrete. The influence of alkaline activated coal fly ash originating from Slovakian power plant in Novsky (Si/Al = 3,1) as a partial cement replacement in concrete on compressive strength of hardened composites after 28 and 90 days was investigated. Alkaline activation of coal fly ash was realized in an autoclave at 130 ℃ and pressure of 160 kPa during 5 hours and in a reactor under normal conditions (equal temperature during 36 hours) at solid/liquid ratio of 0.5. Coal fly ash/cement mixtures were prepared with 25 % cement replacement by starting and modified coal fly ash and given in forms. Compressive strengths of composites after 28 and 90 days of hardening were compared to referential composite without coal fly ash and evaluated according to the standard of STN EN 450 by the value of relative strength KR (compressive strength of coal fly ash/cement composite to compressive strength of comparative concrete). The final compressive strengths of hardened composites based on alkaline activated coal fly ash reached values in the range of 6 up to 50 MPa. In the set of experimental composites based on alkaline activated coal fly ashes, the highest value of relative strength after 28- and 90- days of hardening reached composite with cement replacement by coal fly ash zeolitized in autoclave (105% of compressive strength of referential sample), what is connected with formation of zeolitic phases on surface of coal fly ash particles. The achieved results confirm that alkaline activation of coal fly ash in an autoclave under observed conditions can be successfully used as a partial cement replacement in concrete of C20/25 and C25/30 in accordance with requirements of standards (STN EN 450 and STN EN 206).