The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l...The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.展开更多
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ...The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.展开更多
The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculatio...The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.展开更多
In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide c...In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.展开更多
[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), a...[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields.展开更多
Leptospirillum ferriphilum YXW was isolated through serial dilution from mixed microorganisms enriched in AMD from Dexing copper mine in Jiangxi Province, China. It was mutated by ultrasonic, UV and microwave to colle...Leptospirillum ferriphilum YXW was isolated through serial dilution from mixed microorganisms enriched in AMD from Dexing copper mine in Jiangxi Province, China. It was mutated by ultrasonic, UV and microwave to collect more efficient strain for bioleaching of gold ore. Physiological and biochemical characteristics indicate that strain YXW is a strict chemoautotrophic microorganism, and the optimal condition for its growth is temperature of 40 °C and pH 1.5. After mutation by ultrasonic, UV and microwave, the density of bacterial cells reached 9×109, 8.4×109 and 4.3×108 mL-1, increased by 291%, 265%and 87%, respectively, compared with the original culture. The bacterial total protein activity was improved by microwave and UV mutations, but was reduced by ultrasonic. Mutations had effects on bioleaching of gold ore in sequence of microwave〉UV〉ultrasonic. During gold ore bioleaching, the bacterial mutant after mutation by microwave had the best effect on the extraction rates of arsenic and iron, which were 19.6%and 17.7%higher than that of the original strain after bioleaching for 10 d, respectively. The results suggested that the effects of mutation on bioleaching of gold ore may not be mainly due to increase of bacterial cells density, but may be mainly attributed to the improvement of bacterial total protein activity.展开更多
The effect of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon,which was used as a substitute of carbonaceous matter in carbonaceous gold ores,was studied.After 14 d treatment w...The effect of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon,which was used as a substitute of carbonaceous matter in carbonaceous gold ores,was studied.After 14 d treatment with Phanerochaete chrysosporium,the degradation rate of activated carbon reached 27.59%.The XRD and FTIR analyses indicate that Phanerochaete chrysosporium can distort the micro-crystalline structure of activated carbon,increase the number of oxygen-containing groups and aliphatics and make the aromatic structures be oxidized and exfoliated.The gold-adsorption tests show that Phanerochaete chrysosporium can reduce the preg-robbing capacity of activated carbon by 12.88%.This indicates that Phanerochaete chrysosporium is an available microorganism,and it can be employed to reduce the preg-robbing capacity of carbonaceous matter and improve the gold leaching rate.The combined effect of passivation,alkalization and oxidation of biological enzymes-free radicals of Phanerochaete chrysosporium on carbonaceous matter was also discussed.展开更多
In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures ...In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.展开更多
The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ...The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.展开更多
Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotatio...Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.展开更多
As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts s...As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts should be paid to control the reduction of iron oxide in order to get high nickel-content nickeliferous product.For these reasons,equilibrium condition of iron oxide when laterite ore was selectively reduced by CO2/CO,H2O/H2 and CO2/H2 was studied from the perspective of iron activity with an assumption that the activities of Fe O and Fe3O4 equal 1 in this work,and it well accounts for the inescapability of Fe metallization.Activity coefficient of iron in Ni-Fe binary solid alloy was calculated by Miedema model based on the known thermodynamics datum filed.According to Raoult's law,the relationship among the Fe/Ni ratio,reduction temperature and reduction gas composition was calculated when laterite ore was selectively reduced by the three different reduction systems.The calculation result was discussed and also compared with the experimental result.The trend of metal iron content in the reduction product of laterite ore varying with temperature and gas composition was well predicted by the calculation result.展开更多
In order to relieve the equipment corrosion,reduce chlorine and increase phosphorus contents in leaching solution,theleaching behavior of potassium from phosphorus-potassium associated ore in the mixed acids of hydroc...In order to relieve the equipment corrosion,reduce chlorine and increase phosphorus contents in leaching solution,theleaching behavior of potassium from phosphorus-potassium associated ore in the mixed acids of hydrochloric acid and phosphoricacid was investigated.The effects of various factors,such as mass fraction of hydrochloric acid,solid-to-liquid ratio,material ratio(CaF2dosage(g)/mass of ore(g))and leaching temperature were comprehensively studied.It was found that the dissolution fractionof potassium can reach more than86%under the optimum conditions of leaching temperature95°C,HCl concentration10%,leaching time6h,solid/liquid ratio1:5,and material ratio0.1.In addition,the leaching kinetics of potassium was successfullymodeled by a semi-empirical kinetic model based on the classic shrinking core model.The data showed that the leaching process ofpotassium was controlled by the product layer diffusion and the apparent activation energy for the process was found to be54.67kJ/mol over the temperature range from65to95°C.展开更多
The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The...The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The results showed that in 8 h of milling treatment,the agglomeration and the microstructure did not affect each other.However,with prolonging milling time,the crystallite size tended to reach a saturation value,and the stagnating microstructural changes led to the replacement of agglomeration by aggregation.The leaching results indicated that the mechanical activation can strongly enhance the reactivity of chalcopyrite and the hindering effect of aggregation on leaching was considerably greater than that of agglomeration.Consequently,after 8 h of milling,the maximum Cu leaching rate of 80.13%was achieved after 4 h of acid leaching.展开更多
Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 mi...Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.展开更多
Hard coal mining in the German Ruhr district has a tradition of more than 200 years. Starting in the south near the river Ruhr with mining of seams near to the surface, mining wandered to the north with coal seams dee...Hard coal mining in the German Ruhr district has a tradition of more than 200 years. Starting in the south near the river Ruhr with mining of seams near to the surface, mining wandered to the north with coal seams deeper and deeper. In the same way all environmental effects of mining wandered from south to north, as there are abandoned mining sites, contaminated areas, burning mining dumps, subsided areas and gas accesses at day ground. This all happened in a very high populated area with more than four million inhabitants. Therefore Germany has a long tradition in solving environmental problems of mining activities. The very good interaction of mine authority, mining companies and the mine workers’ union is the main reason why the problems of decreasing mining activities in Germany were solved without economic, environmental or social hazards.展开更多
Coal bursts involve the sudden, violent ejection of coal or rock into the mine workings. They are a particular hazard because they typically occur without warning. During the past 2 years three US coal miners were kil...Coal bursts involve the sudden, violent ejection of coal or rock into the mine workings. They are a particular hazard because they typically occur without warning. During the past 2 years three US coal miners were killed in two coal bursts, following a 6-year period during which there were zero burst fatalities. This paper puts the US experience in the context of worldwide research into coal bursts. It focuses on two major longwall mining coalfields which have struggled with bursts for decades. The Utah experience displays many of the "classic" burst characteristics, including deep cover, strong roof and floor rock, and a direct association between bursts and mining activity. In Colorado, the longwalls of the North Fork Valley (NFV) also work at great depth, but their roof and floor strengths are moderate, and most bursts have occurred during entry development or in headgates, bleeders, or other outby locations. The NFV bursts also are more likely to be associated with geologic structures and large magnitude seismic events. The paper provides a detailed case history to illustrate the experience in each of these coalfields. The paper closes with a brief discussion of how US longwalls have managed the burst risk.展开更多
Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivat...Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.展开更多
基金financially supported from the National Natural Science Foundation of China(No.52164021)the Natural Science Foundation of Yunnan Province,China(No.2019FB078)。
文摘The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca~(2+)and adsorption of Cu~(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S~0 hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.
基金Project(2009FJ3082)supported by Research Project of Science and Technology in Hunan Province,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min.
基金Projects(51464029,51168020,51404119,)supported by the National Natural Science Foundation of ChinaProject(2014Y084)supported by the Natural Science Foundation of Yunnan Province Education Department,ChinaProjects(41118011,201421066)supported by the Cultivation Program of Kunming University of Science and Technology,China
文摘The adsorption behaviors of copper ions on chalcopyrite surfaces were investigated based on zeta potential measurements, X-ray photoelectron spectroscopy, copper ion adsorption experiments, first-principles calculations, and Hallimond tube cell flotation experiments. The results show that copper ions activate the chalcopyrite as a result of the interactions between copper ions and sulfur on the chalcopyrite surface. This adsorption increases the flotation rate under certain conditions, and this is beneficial for the flotation of chalcopyrite. The copper ions in the flotation pulp are mainly derived from surface oxidation dissolution and the release of fluid inclusions, and these effects enable chalcopyrite to be activated.
基金Project (2006BAK04B03) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (kjdb200902-7) supported by Doctoral Candidate Innovation Research Support Program of Science & Technology Review, China+1 种基金Project (1960-71131100023) supported by Postgraduate Dissertation Innovation Foundation of Central South University, ChinaProject (ZKJ2009008) supported by Precious Apparatus Opening Center Foundation of Central South University, China
文摘In order to evaluate the spontaneous combustion hazard of sulfide concentrates in storage, three different kinds of sulfide concentrates (sulfur-rich sulfide concentrate, iron sulfide concentrate and copper sulfide concentrate) were obtained from a storage yard in Dongguashan Copper Mine, China. The reaction processes at different heating rates of 5, 10, 15, 20, and 25 ℃/min in air flow from ambient temperature to 1 000 ℃ were studied by TG-DTG-DSC analysis. By the peak temperatures of DTG curves, the whole reaction process for each sample was divided into different stages, and the corresponding apparent activation energies were calculated by the Ozawa-Flynn-Wall method. It is found that the reaction process of each sample is considerably complex; the apparent activation energy values change from 36 to 160 kJ/mol in different temperature ranges; sulfur-rich sulfide and iron sulfide concentrates have lower apparent activation energy than copper sulfide concentrate below 150 ℃; so they are more inclined to cause spontaneous combustion at ambient temperature.
基金Supported by the National Key Technology R&D Program during the Eleventh Five-year Plan Period,China(2006BAD02A04)the Key Technology R&D Program of Jiangxi Province,China(2009BNA03800)~~
文摘[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields.
基金Project(41073060)supported by the National Natural Science Foundation of ChinaProject(12ZR1440400)supported by the Shanghai Natural Science Foundation of Youth,China+1 种基金Project(B604)supported by the Shanghai Leading Academic Discipline,ChinaProject supported by the State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry,China
文摘Leptospirillum ferriphilum YXW was isolated through serial dilution from mixed microorganisms enriched in AMD from Dexing copper mine in Jiangxi Province, China. It was mutated by ultrasonic, UV and microwave to collect more efficient strain for bioleaching of gold ore. Physiological and biochemical characteristics indicate that strain YXW is a strict chemoautotrophic microorganism, and the optimal condition for its growth is temperature of 40 °C and pH 1.5. After mutation by ultrasonic, UV and microwave, the density of bacterial cells reached 9×109, 8.4×109 and 4.3×108 mL-1, increased by 291%, 265%and 87%, respectively, compared with the original culture. The bacterial total protein activity was improved by microwave and UV mutations, but was reduced by ultrasonic. Mutations had effects on bioleaching of gold ore in sequence of microwave〉UV〉ultrasonic. During gold ore bioleaching, the bacterial mutant after mutation by microwave had the best effect on the extraction rates of arsenic and iron, which were 19.6%and 17.7%higher than that of the original strain after bioleaching for 10 d, respectively. The results suggested that the effects of mutation on bioleaching of gold ore may not be mainly due to increase of bacterial cells density, but may be mainly attributed to the improvement of bacterial total protein activity.
基金Projects (51174062,51104036) supported by the National Natural Science Foundation of ChinaProject (2012AA061502) supported by the National Hi-tech Research and Development Program of China+1 种基金Project (2012BAE06B05) supported by the National Science and Technology Support Program of China during the 12th Five-Year Plan PeriodProjects (N120602006,N110302002,N110602005) supported by Fundamental Research Funds for the Central Universities of China
文摘The effect of Phanerochaete chrysosporium on degradation and preg-robbing capacity of activated carbon,which was used as a substitute of carbonaceous matter in carbonaceous gold ores,was studied.After 14 d treatment with Phanerochaete chrysosporium,the degradation rate of activated carbon reached 27.59%.The XRD and FTIR analyses indicate that Phanerochaete chrysosporium can distort the micro-crystalline structure of activated carbon,increase the number of oxygen-containing groups and aliphatics and make the aromatic structures be oxidized and exfoliated.The gold-adsorption tests show that Phanerochaete chrysosporium can reduce the preg-robbing capacity of activated carbon by 12.88%.This indicates that Phanerochaete chrysosporium is an available microorganism,and it can be employed to reduce the preg-robbing capacity of carbonaceous matter and improve the gold leaching rate.The combined effect of passivation,alkalization and oxidation of biological enzymes-free radicals of Phanerochaete chrysosporium on carbonaceous matter was also discussed.
基金Project(2012J05088) supported by the Natural Science Foundation of Fujian Province,ChinaProject(022409) supported by the School Talent Foundation of Fuzhou University,China
文摘In order to uncover the intrinsic reasons for spontaneous combustion of sulfide minerals,representative samples were collected from typical metal mines to carry out the mechanical activation experiment.The structures and heat behaviors of activated samples were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD) analysis,and simultaneous thermal analysis(STA).It is found that the sulfide minerals after mechanical activation show many changes with increased specific surface areas,aggregation phenomenon,decreased diffraction peak intensity,broadened diffraction peak,declined initial temperatures of heat release and self-ignition points.A new theory for explaining the spontaneous combustion of sulfide minerals is put forward:the chemical reaction activity of sulfide minerals is heightened by all kinds of mechanical forces during the mining,and the spontaneous combustion takes place finally under proper environment.
基金Project(51374058)supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.
基金Project(2013AA064102)supported by the High-tech Research and Development Program of ChinaProject(51004114)supported by the National Natural Science Foundation of China+1 种基金Project(2007B52)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCEP-08-0568)supported by the Program for New Century Excellent Talents in Chinese University
文摘Gemini quaternary ammonium salt surfactants, butane-a, co-bis(dimethyl dodeculammonium bromide) (BDDA) ethane-a, fl-bis(dimethyl dodeculammonium bromide) (EDDA) were adopted to comparatively study the flotation behaviors of kaolinite, pyrophyllite and illite. It was found that three silicate minerals all exhibited good floatability with Gemini cationic surfactants as collectors over a wide pH range, while BDDA showed a stronger collecting power than EDDA. FTIR spectra and zeta potential analysis indicated that the mechanism of adsorption of Gemini collector molecules on three silicate minerals surfaces was almost identical for the electronic attraction and hydrogen bonds effect. The theoretically obtained results of density functional theory (DFT) at B3LYP/6-31G (d) level demonstrated the stronger collecting power of BDDA presented in the floatation test and zeta potential measurement.
基金Project(2012CB722805)supported by the National Basic Research Program of China
文摘As the sulfide ore deposits become less economical and environmental viable as a source of nickel,increasing attention is being paid to the laterite ores.But in the pyrometallurgical process of laterite,more efforts should be paid to control the reduction of iron oxide in order to get high nickel-content nickeliferous product.For these reasons,equilibrium condition of iron oxide when laterite ore was selectively reduced by CO2/CO,H2O/H2 and CO2/H2 was studied from the perspective of iron activity with an assumption that the activities of Fe O and Fe3O4 equal 1 in this work,and it well accounts for the inescapability of Fe metallization.Activity coefficient of iron in Ni-Fe binary solid alloy was calculated by Miedema model based on the known thermodynamics datum filed.According to Raoult's law,the relationship among the Fe/Ni ratio,reduction temperature and reduction gas composition was calculated when laterite ore was selectively reduced by the three different reduction systems.The calculation result was discussed and also compared with the experimental result.The trend of metal iron content in the reduction product of laterite ore varying with temperature and gas composition was well predicted by the calculation result.
基金Project(51274153) supported by the National Natural Science Foundation of ChinaProjects(2011CDA120,2015CFB523) supported by the Natural Science Foundation of Hubei Province of China+2 种基金Project(G201510) supported by the State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)ChinaProject(K201454) supported by the Youths Science Foundation of Wuhan Institute of Technology,China
文摘In order to relieve the equipment corrosion,reduce chlorine and increase phosphorus contents in leaching solution,theleaching behavior of potassium from phosphorus-potassium associated ore in the mixed acids of hydrochloric acid and phosphoricacid was investigated.The effects of various factors,such as mass fraction of hydrochloric acid,solid-to-liquid ratio,material ratio(CaF2dosage(g)/mass of ore(g))and leaching temperature were comprehensively studied.It was found that the dissolution fractionof potassium can reach more than86%under the optimum conditions of leaching temperature95°C,HCl concentration10%,leaching time6h,solid/liquid ratio1:5,and material ratio0.1.In addition,the leaching kinetics of potassium was successfullymodeled by a semi-empirical kinetic model based on the classic shrinking core model.The data showed that the leaching process ofpotassium was controlled by the product layer diffusion and the apparent activation energy for the process was found to be54.67kJ/mol over the temperature range from65to95°C.
基金the Special Fund for the National Natural Science Foundation of China(U1608254)the National Key R&D Program of China(2018YFC1902002).
文摘The effect of mechanical activation on the granulometric parameters,microstructure,and leaching efficiency of chalcopyrite was evaluated,and the occurrence/transition of agglomeration and aggregation was discussed.The results showed that in 8 h of milling treatment,the agglomeration and the microstructure did not affect each other.However,with prolonging milling time,the crystallite size tended to reach a saturation value,and the stagnating microstructural changes led to the replacement of agglomeration by aggregation.The leaching results indicated that the mechanical activation can strongly enhance the reactivity of chalcopyrite and the hindering effect of aggregation on leaching was considerably greater than that of agglomeration.Consequently,after 8 h of milling,the maximum Cu leaching rate of 80.13%was achieved after 4 h of acid leaching.
基金Project(2009AA06XK1485430) supported by the National Hi-tech Research and Development Program of ChinaProject(2007CB613501) supported by the National Basic Research Program of China
文摘Mechanical activation was used to improve the extraction of chromium in molten NaOH.It is observed that the extraction ratio reaches 97% after leaching for 200 min when chromite ore is mechanically activated for 10 min,but only 34% if not activated.Mechanical activation can decrease the particle size,increase the surface area,and enhance the lattice distortion.Further,the mechanisms for mechanical activation were exposed.The results show that the mechanical activation mainly focuses on chromite ore particle size decrease and the lattice distortion.The formation of aggregation weakens the strengthening effect of mechanical activation for releasing high surface energy.
文摘Hard coal mining in the German Ruhr district has a tradition of more than 200 years. Starting in the south near the river Ruhr with mining of seams near to the surface, mining wandered to the north with coal seams deeper and deeper. In the same way all environmental effects of mining wandered from south to north, as there are abandoned mining sites, contaminated areas, burning mining dumps, subsided areas and gas accesses at day ground. This all happened in a very high populated area with more than four million inhabitants. Therefore Germany has a long tradition in solving environmental problems of mining activities. The very good interaction of mine authority, mining companies and the mine workers’ union is the main reason why the problems of decreasing mining activities in Germany were solved without economic, environmental or social hazards.
文摘Coal bursts involve the sudden, violent ejection of coal or rock into the mine workings. They are a particular hazard because they typically occur without warning. During the past 2 years three US coal miners were killed in two coal bursts, following a 6-year period during which there were zero burst fatalities. This paper puts the US experience in the context of worldwide research into coal bursts. It focuses on two major longwall mining coalfields which have struggled with bursts for decades. The Utah experience displays many of the "classic" burst characteristics, including deep cover, strong roof and floor rock, and a direct association between bursts and mining activity. In Colorado, the longwalls of the North Fork Valley (NFV) also work at great depth, but their roof and floor strengths are moderate, and most bursts have occurred during entry development or in headgates, bleeders, or other outby locations. The NFV bursts also are more likely to be associated with geologic structures and large magnitude seismic events. The paper provides a detailed case history to illustrate the experience in each of these coalfields. The paper closes with a brief discussion of how US longwalls have managed the burst risk.
基金Supported by the Major State Basic Research Development Program Fund (2010CB226801) the National Natural Science Foundation of China (50704034) the State Key Laboratory of Coal Resources and Safe Mining Open Research Fund (SKLCRSM11KFB08)
文摘Experiments simulating the effect of coal mine stopping through a fault zone were designed based on a working face of the Qianqiu coal mine in Yima, China. Through simulation of the physical process of fault reactivation and coal bumps, the displacement of the surrounding strata and evolution characteristics of fault stress under the effect of mining were studied. The mechanism of fault reactivation induced by coal mining was analyzed. The results show that shortly before fault reactiva- tion, the normal stress and shear stress increased rapidly and the risk of a fault slip occurring was also increased. The fault reac- tivation, caused by the mining activity, occurred when the working face was 25-35 m from the fault along the hanging wall. The influence of mining increased the possibility of fault reactivation, while the local failure of the bearing capacity of the working face was the direct cause of the fault slip. Our results indicate that the influence of fault slip on the coal of the working face had a transient impact and acted as a loading-unloading function.