In order to study the influence of rubidium(Rb)addition on the phase composition,microstructure,mechanical properties and cell response of bioactive glass-ceramics,CaO−SiO2−Na2O−B2O3−MgO−ZnO−P2O5 glass system was desi...In order to study the influence of rubidium(Rb)addition on the phase composition,microstructure,mechanical properties and cell response of bioactive glass-ceramics,CaO−SiO2−Na2O−B2O3−MgO−ZnO−P2O5 glass system was designed with and without addition of Rb.The results show that hydroxyapatite(HA)and Mg−whitelockite(Ca18Mg2H2(PO4)14)crystalline phases are formed in the glass matrix without Rb.After the addition of Rb,only HA phase is detected.The grain size of the crystals in the glass-ceramics is larger with the addition of Rb than that of samples without Rb.Rb addition can improve the bending strength of glass-ceramics.The cultivation of human bone marrow mesenchymal stem cells(hBMSCs)on Rb-containing glass-ceramics demonstrates enhanced cell adhesion,proliferation and ALP activity.In conclusion,Rb-modified glass-ceramics exhibit good mechanical property,excellent bioactivity and biocompatibility,which have potential for bone regeneration application.展开更多
The carbon steels dispersed with ultrafine TiC particles were fabricated by conventional casting method. The casting process is more economical than other available routes for metal matrix composite production, and th...The carbon steels dispersed with ultrafine TiC particles were fabricated by conventional casting method. The casting process is more economical than other available routes for metal matrix composite production, and the large sized components to be fabricated in short processing time. However, it is extremely difficult to obtain uniform dispersion of ultrafine ceramic particles in liquid metals due to the poor wettability and the specific gravity difference between the ceramic particle and metal matrix. In order to solve these problems, the mechanical milling (MM) and surface-active processes were introduced. As a result, Cu coated ultrafine TiC powders made by MM process using high energy ball milling machine were mixed with Sn powders as a surfactant to get better wettability by lowering the surface tension of carbon steel melt. The microstructural investigations by OM show that ultrafine TiC particles are distributed uniformly in carbon steel matrix. The grain sizes of the cast matrix with ultrafine TiC particles are much smaller than those without ultrafine TiC particles. This is probably due to the fact that TiC particles act as nucleation sites during solidification. The wear resistance of cast carbon steel composites added with MMed TiC/Cu-Sn powders is improved due to grain size refinement.展开更多
CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the produc...CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the product were studied via their crystal structure,microstructure,and piezoelectric performance.It is found that an appropriate Sb-Mn co-doping amount can effectively optimize the crystal structure and decrease the oxygen vacancy concentration in CBT ceramics,leading to enhanced electrical properties.Optimized electrical performance with a high Curie temperature(TC)of 792℃and a remarkable piezoelectric coefficient(d33)of 25 p C/N were achieved at a doping amount(x)of 0.05.Furthermore,this ceramic is found to exhibit an excellent thermal stability,with d33 retaining 88%of its original value after annealing at 600℃for 2 h.Moreover,this ceramic shows a high electrical resistivity(ρ)of 1.35×10^(8)Ω·cm with a small dielectric loss(tanδ)of 1.7%at 400℃.Because of such outstanding piezoelectric performance,it is believed that these Sb-Mn co-doped CBT ceramics could be potential candidates for high-temperature piezoelectric applications.展开更多
Abstract modern social awareness and people' s aesthetic psychology has undergone tremendous changes in the design of modem ceramic art poses severe requirements. This article from the perspective of modem lifestyles...Abstract modern social awareness and people' s aesthetic psychology has undergone tremendous changes in the design of modem ceramic art poses severe requirements. This article from the perspective of modem lifestyles, made from ceramic design concepts, modeling, implication, decoration, materials and technology and other aspects of transformation and innovation, in order to achieve adapt to the modem lifestyle, aesthetic purposes.展开更多
Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-...Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.展开更多
The Marajó Island is the largest island of the Marajō archipelago, located in the north of Brazil. In this region, at the end of 19th century, it was identified an archaeological society named Marajora, which oc...The Marajó Island is the largest island of the Marajō archipelago, located in the north of Brazil. In this region, at the end of 19th century, it was identified an archaeological society named Marajora, which occupied the island from 400 to 1,350 AD. It was characterized by a ceramic style recognized by its beauty and exuberance. Until this moment, the physical and chemical analysis studies in this ceramics are scarce and this kind of studies may help archaeological studies performed in the island. With this purpose, this work presents a preliminary study of the firing temperature in the ceramics. For that, the elementary concentrations of 109 samples from Museu de Archaeology and Ethnology Museum of the University of Sáo Paulo and samples collected in the Marajá Island were studied. The samples were analyzed using instrumental neutron activation analysis in which the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined. The interpretation of the results was made using multivariate statistical approaches and showed the existence of three chemical groups. Some samples of each cluster were chosen for the determination of their firing temperatures by electron paramagnetic resonance, in order to verify if different firing temperatures was associated with different elemental groups of ceramic samples. The results showed that there are no statistical differences in the firing temperature between the samples from Archaeology and Ethnology Museum and the contemporary samples of the Marajá Island.展开更多
基金The authors are grateful for the financial supports from the Natural Science Foundation of Hunan Province,China(2019JJ50797)the Postdoctoral Science Foundation of China(2019T120711).
文摘In order to study the influence of rubidium(Rb)addition on the phase composition,microstructure,mechanical properties and cell response of bioactive glass-ceramics,CaO−SiO2−Na2O−B2O3−MgO−ZnO−P2O5 glass system was designed with and without addition of Rb.The results show that hydroxyapatite(HA)and Mg−whitelockite(Ca18Mg2H2(PO4)14)crystalline phases are formed in the glass matrix without Rb.After the addition of Rb,only HA phase is detected.The grain size of the crystals in the glass-ceramics is larger with the addition of Rb than that of samples without Rb.Rb addition can improve the bending strength of glass-ceramics.The cultivation of human bone marrow mesenchymal stem cells(hBMSCs)on Rb-containing glass-ceramics demonstrates enhanced cell adhesion,proliferation and ALP activity.In conclusion,Rb-modified glass-ceramics exhibit good mechanical property,excellent bioactivity and biocompatibility,which have potential for bone regeneration application.
基金supported by the Korea Atomic Energy Research Institute (KAERI) R&D Program
文摘The carbon steels dispersed with ultrafine TiC particles were fabricated by conventional casting method. The casting process is more economical than other available routes for metal matrix composite production, and the large sized components to be fabricated in short processing time. However, it is extremely difficult to obtain uniform dispersion of ultrafine ceramic particles in liquid metals due to the poor wettability and the specific gravity difference between the ceramic particle and metal matrix. In order to solve these problems, the mechanical milling (MM) and surface-active processes were introduced. As a result, Cu coated ultrafine TiC powders made by MM process using high energy ball milling machine were mixed with Sn powders as a surfactant to get better wettability by lowering the surface tension of carbon steel melt. The microstructural investigations by OM show that ultrafine TiC particles are distributed uniformly in carbon steel matrix. The grain sizes of the cast matrix with ultrafine TiC particles are much smaller than those without ultrafine TiC particles. This is probably due to the fact that TiC particles act as nucleation sites during solidification. The wear resistance of cast carbon steel composites added with MMed TiC/Cu-Sn powders is improved due to grain size refinement.
基金financial support from the Key Research and Development Project of Zhejiang Province,China(No.2017C01056)。
文摘CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the product were studied via their crystal structure,microstructure,and piezoelectric performance.It is found that an appropriate Sb-Mn co-doping amount can effectively optimize the crystal structure and decrease the oxygen vacancy concentration in CBT ceramics,leading to enhanced electrical properties.Optimized electrical performance with a high Curie temperature(TC)of 792℃and a remarkable piezoelectric coefficient(d33)of 25 p C/N were achieved at a doping amount(x)of 0.05.Furthermore,this ceramic is found to exhibit an excellent thermal stability,with d33 retaining 88%of its original value after annealing at 600℃for 2 h.Moreover,this ceramic shows a high electrical resistivity(ρ)of 1.35×10^(8)Ω·cm with a small dielectric loss(tanδ)of 1.7%at 400℃.Because of such outstanding piezoelectric performance,it is believed that these Sb-Mn co-doped CBT ceramics could be potential candidates for high-temperature piezoelectric applications.
文摘Abstract modern social awareness and people' s aesthetic psychology has undergone tremendous changes in the design of modem ceramic art poses severe requirements. This article from the perspective of modem lifestyles, made from ceramic design concepts, modeling, implication, decoration, materials and technology and other aspects of transformation and innovation, in order to achieve adapt to the modem lifestyle, aesthetic purposes.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.
文摘The Marajó Island is the largest island of the Marajō archipelago, located in the north of Brazil. In this region, at the end of 19th century, it was identified an archaeological society named Marajora, which occupied the island from 400 to 1,350 AD. It was characterized by a ceramic style recognized by its beauty and exuberance. Until this moment, the physical and chemical analysis studies in this ceramics are scarce and this kind of studies may help archaeological studies performed in the island. With this purpose, this work presents a preliminary study of the firing temperature in the ceramics. For that, the elementary concentrations of 109 samples from Museu de Archaeology and Ethnology Museum of the University of Sáo Paulo and samples collected in the Marajá Island were studied. The samples were analyzed using instrumental neutron activation analysis in which the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined. The interpretation of the results was made using multivariate statistical approaches and showed the existence of three chemical groups. Some samples of each cluster were chosen for the determination of their firing temperatures by electron paramagnetic resonance, in order to verify if different firing temperatures was associated with different elemental groups of ceramic samples. The results showed that there are no statistical differences in the firing temperature between the samples from Archaeology and Ethnology Museum and the contemporary samples of the Marajá Island.