期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于梯度提升回归模型的生猪价格预测 被引量:8
1
作者 付莲莲 伍健 《计算机仿真》 北大核心 2020年第1期347-350,共4页
研究生猪价格的准确预测问题,传统预测模型存在速度慢、陷入局部极小值、核函数的选择等问题,预测效果不佳。为此,首先筛选出生猪价格的显著因素,接着利用Python数据分析分别建立贝叶斯岭回归、普通线性回归、弹性网络和支持向量机模型... 研究生猪价格的准确预测问题,传统预测模型存在速度慢、陷入局部极小值、核函数的选择等问题,预测效果不佳。为此,首先筛选出生猪价格的显著因素,接着利用Python数据分析分别建立贝叶斯岭回归、普通线性回归、弹性网络和支持向量机模型,将这4个回归模型作为梯度提升回归模型的训练集,对生猪价格进行预测。结果表明,综合集成的梯度提升回归模型的均方差(MSE)为0.056,平均绝对误差(MAE)为0.18,判定系数为0.994,比前面单一模型预测效果好。最后,利用梯度提升回归模型对2017年2月至2017年11月的生猪价格预测,发现输出的预测值与真实值比较接近,最大相对误差为3.495%,梯度提升回归模型具有较高的预测精度。 展开更多
关键词 生猪价格 预测 梯度提升回归 派梭数据分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部