期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
柴油机受热零部件-冷却系统的流/热耦合仿真分析 被引量:2
1
作者 张万平 杨志刚 肖国权 《系统仿真学报》 CAS CSCD 北大核心 2011年第1期203-206,共4页
建立了某D6114柴油机固件(机体、缸盖和缸套)和冷却系统的耦合模型,应用直接流/热耦合的方法对耦合莫型进行流动和传热的仿真分析,冷却水和冷却壁面间的热量交换由耦合计算自动完成,预测了该机冷却水套的流速分布和耦合体的温度场。数... 建立了某D6114柴油机固件(机体、缸盖和缸套)和冷却系统的耦合模型,应用直接流/热耦合的方法对耦合莫型进行流动和传热的仿真分析,冷却水和冷却壁面间的热量交换由耦合计算自动完成,预测了该机冷却水套的流速分布和耦合体的温度场。数值模拟结果表明:机体水套的流场基本满足要求,而缸盖水腔各缸的流速分布存在明显差异,其中第一缸的局部区域流体速度最低(局部小于0.5m/s);受热部件的温度变化较大,差异明显,无论是缸盖、机体还是缸套,最大温度均出现在第一缸。 展开更多
关键词 固体部件 冷却系统 流/热耦合 仿真
下载PDF
飞行器前体-进气道热变形效应对进气性能影响的流/热/固耦合数值模拟
2
作者 李思逸 刘磊 +3 位作者 杨肖峰 王梓伊 杜雁霞 桂业伟 《气体物理》 2023年第4期18-26,共9页
进气性能是吸气式高超声速飞行器进气道设计的重要指标。在长时间气动热载荷作用下,飞行器前体和进气道均会产生不同程度的热变形现象,改变进气道内部气流组织和流场结构,影响进气性能甚至危及飞行安全。基于自主研发的热环境/热响应耦... 进气性能是吸气式高超声速飞行器进气道设计的重要指标。在长时间气动热载荷作用下,飞行器前体和进气道均会产生不同程度的热变形现象,改变进气道内部气流组织和流场结构,影响进气性能甚至危及飞行安全。基于自主研发的热环境/热响应耦合计算分析平台,开展了飞行器典型前体-进气道结构的流/热/固耦合数值模拟,分析了前体压缩面和唇口构型的热变形效应对进气道波系结构和进气性能的影响规律。分析表明:长时间巡航状态下,考虑热变形影响时,进气道唇口会偏离设计状态,波系随局部变形而发生位移和振荡,导致进气道入口流量系数上升,总压恢复系数下降,升压比上升。热变形导致进气性能相关影响需在吸气式飞行器设计中予以重点关注。 展开更多
关键词 前体-进气道 流//固耦合 高超声速 变形 进气性能
下载PDF
涡轮导向叶片热冲击数值模拟研究 被引量:12
3
作者 关鹏 艾延廷 +1 位作者 王志 王腾飞 《推进技术》 EI CAS CSCD 北大核心 2016年第10期1938-1945,共8页
研究热冲击作用下涡轮导向叶片的热应力及振动模态,旨在从热-结构影响角度揭示静子叶片损伤机理,对其热疲劳寿命分析及抗热疲劳设计具有重要意义。基于瞬态热/流耦合理论,采用有限元/边界元方法,实现某型航空发动机涡轮导向叶片在热冲... 研究热冲击作用下涡轮导向叶片的热应力及振动模态,旨在从热-结构影响角度揭示静子叶片损伤机理,对其热疲劳寿命分析及抗热疲劳设计具有重要意义。基于瞬态热/流耦合理论,采用有限元/边界元方法,实现某型航空发动机涡轮导向叶片在热冲击作用下的温度场计算,在此基础上求解出叶片的热应力及振动模态。研究表明,采用瞬态流/热耦合可以有效预测叶片的温度分布,其结果与试验误差为6%;依据计算所得热应力及模态振型,可以推断出叶片出现热损伤的位置,且与实验结果吻合较好;根据数值模拟结果,固有频率随温度的升高而下降,前六阶频率平均下降24.7%。 展开更多
关键词 涡轮导向叶片 瞬态流/热耦合 应力场 模态分析
下载PDF
Effect of working parameters on performance characteristics of hydrostatic turntable by using FSI-thermal model 被引量:3
4
作者 HU Jun-ping LIU Cheng-pei 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2589-2600,共12页
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl... Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential. 展开更多
关键词 hydrostatic turntable working parameters performance characteristics FSI-thermal coupled model
下载PDF
Cast-rolling force model in solid-liquid cast-rolling bonding(SLCRB) process for fabricating bimetal clad strips 被引量:7
5
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Ri-dong ZHAO Miao FENG Kai MENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期626-635,共10页
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t... Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming. 展开更多
关键词 bimetal clad strip solid−liquid cast-rolling bonding rolling force calculation model kiss point thermal−flow coupled simulation
下载PDF
Heat transfer analysis and experimental study of unequal diameter twin-roll casting process for fabricating Cu/Al clad strips 被引量:2
6
作者 HUANG Hua-gui ZHANG Jun-peng JI Ce 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1133-1146,共14页
Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the... Unequal diameter twin-roll casting(UDTRC)can improve the formability,surface conditions,and production efficiency during the fabrication of clad strips.Using Fluent software,a numerical simulation is used to study the asymmetric heat transfer characteristics of Cu/Al clad strips fabricated by UDTRC.The effects of roller velocity ratio,Cu strip thickness,and inclination angle on the kissing point position,as well as the entire temperature distribution are obtained.The heat transfer model is established,and the mechanism is discussed.The Cu strip and rollers are found to be the main causes of asymmetric heat transfer,indicating that the roller velocity ratio changes the liquid zone proportion in the molten pool.The Cu strip thickness determines the heat absorption capacity and the variations in thermal resistance between the molten Al and the big roller.The inclination angle of the small roller changes the cooling time of big roller to molten Al.Moreover,the microstructure of Al cladding under different roller velocity ratios is examined.The results show significant grain refinement caused by the shear strain along the thickness direction of Al cladding and the intense heat transfer at the moment of contact between the metal Al cladding and Cu strip. 展开更多
关键词 unequal diameter twin-roll casting Cu/Al clad strips asymmetric heat transfer thermal-fluid coupled microstructure
下载PDF
Fluid-solid coupling numerical simulation of charge process in variable-mass thermodynamic system 被引量:8
7
作者 胡继敏 金家善 严志腾 《Journal of Central South University》 SCIE EI CAS 2012年第4期1063-1072,共10页
Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated... Abstract: A joint solution model of variabk:-mass flow in two-phase region and fluid-solid coupling heat transfer, concerned about the charge process of variable-mass thermodynamic system, is built up and calculated by the finite element method (FEM). The results are basically consistent with relative experimental data. The calculated average heat transfer coefficient reaches 1.7~105 W/(m2. K). When the equal percentage valve is used, the system needs the minimum requirements of valve control, but brings the highest construction cost. With the: decrease of initial steam pressure, the heat transfer intensity also weakens but the steam flow increases. With the initial water filling coefficient increasing or the temperature of steam supply decreasing, the amount of accumulative steam flow increases with the growth of steam pressure. When the pressure of steam supply drops, the steam flow gradient increases during the maximum opening period of control valve, and causes the maximum steam flow to increase. 展开更多
关键词 steam accumulator variable-mass control valve fluid-solid coupling numerical simulation
下载PDF
Mathematical model for coupled reactive flow and solute transport during heap bioleaching of copper sulfide 被引量:5
8
作者 尹升华 吴爱祥 +1 位作者 李希雯 王贻明 《Journal of Central South University》 SCIE EI CAS 2011年第5期1434-1440,共7页
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran... Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process. 展开更多
关键词 copper sulphide heap bioleaching leaching reaction solution flow solute transport
下载PDF
A non-monotonic blow-off limit of micro-jet methane diffusion flame at different tube-wall thicknesses
9
作者 LI Dan LIU Bing +4 位作者 HUANG Long LIU Lei KE Wei-chang WAN Jian-long LIU Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1880-1890,共11页
In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in... In order to provide guideline for choosing a suitable tube-wall thickness(d)for the micro-jet methane diffusion flame,the effect of tube-wall thickness on the blow-off limit is investigated via numerical simulation in the present work.The results show that the blow-off limit of micro-jet methane diffusion flame firstly increases and then decreases with the increase of tube-wall thickness.Subsequently,the underlying mechanisms responsible for the above non-monotonic blow-off limit are discussed in terms of the flow filed,strain effect and conjugate heat exchange.The analysis indicates that the flow field is insignificant for the non-monotonic blow-off limit.A smaller strain effect can induce the increase of the blow-off limit fromd=0.1 to 0.2 mm,and a worse heat recirculation effect can induce the decrease of the blow-off limit fromd=0.2 to 0.4 mm.The non-monotonic blow-off limit is mainly determined by the heat loss of flame to the tube-wall and the performance of tube-wall on preheating unburned fuel.The smallest heat loss of flame to the tube-wall and the best performance of tube-wall on preheating unburned fuel result in the largest blow-off limit atd=0.2 mm.Therefore,a moderate tube-wall thickness is more suitable to manufacture the micro-jet burner. 展开更多
关键词 micro-jet diffusion flame blow-off limit flow field strain effect conjugate heat exchange
下载PDF
Coupled Seepage and Heat Transfer Intake Model
10
作者 吴君华 由世俊 +1 位作者 张欢 李海山 《Transactions of Tianjin University》 EI CAS 2009年第6期446-451,共6页
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter... In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP. 展开更多
关键词 seawater source heat pump renewable energy seawater intake beach well
下载PDF
Specific Heat of a Two-Layer Magnetic Superlattice
11
作者 QIU Rong-Ke LIANG Jing ZHAO Jian YING Cai-Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期969-973,共5页
The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one arestudied.It is found that the spin quantum numbers,the interlayer and intralayer exchange couplings,the anisotropy,... The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one arestudied.It is found that the spin quantum numbers,the interlayer and intralayer exchange couplings,the anisotropy,theapplied magnetic field,and the temperature all affect the specific heat of these superlattices.For both the ferromagneticand ferrimagnetic superlattices,the specific heat decreases with increasing the spin quantum number,the absolutevalue of interlayer exchange coupling,intralayer exchange coupling,and anisotropy,while it increases with increasingtemperature at low temperatures.When an applied magnetic field is enhanced,the specific heat decreases in the two-layerferromagnetic superlattice,while it is almost unchanged in the two-layer ferrimagnetic superlattice at low fieldrange at low temperatures. 展开更多
关键词 ferromagnetic and ferrimagnetic superlattice specific heat ANISOTROPY spin quantum numbers interlayer and intralayer exchange couplings applied magnetic field
下载PDF
风兜面积对气冷喷油杆性能影响的数值研究 被引量:4
12
作者 刘友宏 王晓博 《航空动力学报》 EI CAS CSCD 北大核心 2016年第2期337-344,共8页
以某型涡扇发动机加力燃烧室气冷喷油杆为研究对象,在梯形截面的风兜下底和高度不变的情况下,通过改变上底长度得到一系列不同风兜面积的几何模型,综合考虑外流场对气冷喷油杆内部流动和换热特性的影响,对其在巡航状态下进行了流/热/固... 以某型涡扇发动机加力燃烧室气冷喷油杆为研究对象,在梯形截面的风兜下底和高度不变的情况下,通过改变上底长度得到一系列不同风兜面积的几何模型,综合考虑外流场对气冷喷油杆内部流动和换热特性的影响,对其在巡航状态下进行了流/热/固耦合三维数值模拟研究,获得了不同风兜面积对气冷喷油杆引气率、冷却空气喷口流量分布、壁面平均冷却效果、壁面最高温度的影响规律.结果表明:引气率随风兜面积增大线性增大;喷油嘴凸台周围冷却空气喷口的流量沿气冷喷油杆内冷却空气流向呈二次曲线规律变化,且随风兜面积增大分布趋于均匀;随风兜面积增大,喷油杆、隔热套壁面平均冷却效果线性增大,壁面最高温度降低;有效抑制内涵高温燃气倒灌进入隔热套是避免喷油杆局部高温的关键. 展开更多
关键词 气冷喷油杆 风兜 流//固耦合 量分布 冷却效果 壁面最高温度
原文传递
Thermal analysis of high speed permanent magnetic generator 被引量:2
13
作者 LI WeiLi ZHANG XiaoChen +2 位作者 CHENG ShuKang CAO JunCi ZHANG YiHuang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1419-1426,共8页
High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal... High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal coupling analyzed. The transient 2D electromagnetic field while machine is under rated operating is analyzed by using the time-stepping FEM, from which the electromagnetic performances and the loss distributions are obtained. Then, an analysis model for fluid-solid temperature field analysis is established. Taking losses as the distributed heat sources, the 3D thermal field is coupling calculated. The variations of heat transfer coefficient and temperature of fluid in stator grooves along the axial direction, as well as the whole region 3D temperature distribution in HSPMG are obtained. Then, considering the variations of heat sources distributions and heat transfer conditions, 3D temperature fields of HSPMG operating under different speeds are calculated, and the influences of machine operating speed on the HSPMG thermal performance are studied, based on which, the functions of machine temperature with operating speed and stator windings resistance are proposed. The obtained conclusions may provide a useful reference for the design and research of HSPMG. 展开更多
关键词 high-speed permanent magnetic generator ELECTROMAGNETIC FLUID TEMPERATURE SPEED
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部