期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
采用充水电缆沟敷设方案的海缆登陆段载流量计算 被引量:11
1
作者 游磊 王健 +2 位作者 刘刚 刘毅刚 郑明 《广东电力》 2017年第10期11-16,共6页
为了检验近海风电场海缆登陆段由土壤直埋改为充水电缆沟敷设的载流量提升效果,建立了充水电缆沟内二维流–热耦合求解的数学模型,利用COMSOL Multiphysics软件对某条置于充水电缆沟的海缆载流量进行计算,得到沟内流场和温度场分布,验... 为了检验近海风电场海缆登陆段由土壤直埋改为充水电缆沟敷设的载流量提升效果,建立了充水电缆沟内二维流–热耦合求解的数学模型,利用COMSOL Multiphysics软件对某条置于充水电缆沟的海缆载流量进行计算,得到沟内流场和温度场分布,验证了模型的正确性。由于水的自然对流可有效地改善电缆的散热条件,与直埋时相比,采用充水电缆沟敷设方案的海缆载流量提升了43.8%。基于该模型仿真分析了不同因素对充水电缆沟内海缆载流量的影响规律:电缆沟高度或宽度增大时,载流量均会增大,但增大宽度比增大高度能带来更明显的载流量提升效果;海缆在沟内的放置高度变化对载流量基本无影响。 展开更多
关键词 海底电缆 登陆段 充水电缆沟 流–热耦合模型 自然对 有限元法
下载PDF
Effect of working parameters on performance characteristics of hydrostatic turntable by using FSI-thermal model 被引量:3
2
作者 HU Jun-ping LIU Cheng-pei 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2589-2600,共12页
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl... Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential. 展开更多
关键词 hydrostatic turntable working parameters performance characteristics FSI-thermal coupled model
下载PDF
Cast-rolling force model in solid-liquid cast-rolling bonding(SLCRB) process for fabricating bimetal clad strips 被引量:7
3
作者 Jun-peng ZHANG Hua-gui HUANG +2 位作者 Ri-dong ZHAO Miao FENG Kai MENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期626-635,共10页
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t... Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming. 展开更多
关键词 bimetal clad strip solid−liquid cast-rolling bonding rolling force calculation model kiss point thermal−flow coupled simulation
下载PDF
Mathematical model for coupled reactive flow and solute transport during heap bioleaching of copper sulfide 被引量:5
4
作者 尹升华 吴爱祥 +1 位作者 李希雯 王贻明 《Journal of Central South University》 SCIE EI CAS 2011年第5期1434-1440,共7页
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran... Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process. 展开更多
关键词 copper sulphide heap bioleaching leaching reaction solution flow solute transport
下载PDF
Coupled Seepage and Heat Transfer Intake Model
5
作者 吴君华 由世俊 +1 位作者 张欢 李海山 《Transactions of Tianjin University》 EI CAS 2009年第6期446-451,共6页
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter... In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water tem-perature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP. 展开更多
关键词 seawater source heat pump renewable energy seawater intake beach well
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部