Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads wh...Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.展开更多
Multiflux, a new thermal, hydrologic, and airflow model and software was being employed to solve the flow of heat, moisture, and air in and around an underground opening. The airway domain was solved with an integrate...Multiflux, a new thermal, hydrologic, and airflow model and software was being employed to solve the flow of heat, moisture, and air in and around an underground opening. The airway domain was solved with an integrated-parameter Computational Fluid Dynamic (CFD) module, which is an embedded part of the Multiflux code. The CFD model includes convection, conduction, and radiation for heat, as well as convection and diffusion for moist-ure transport in an air-filled opening. The surrounding rockmass model may be from any analytical solution, or from a complex thermal-hydrologic numerical model such as NUFT or TOUGH2. The rockmass model is interfaced to Multiflux using a novel technique called Numerical Transport Code Functionalization (NTCF). The purpose was to briefly describe the Multiflux model and show four example applications. The first example reports the results of Multiflux simulations for a mine drift, comparing calculations with CLIMSIM, a well known mine climate software, and with measured data. The second and third examples involve development ends in two coal mines. Another development-end ventilation model in Multiflux is also shown as the 4th example compared with field measurements from the Lucky Friday Mine in Idaho, USA for comparison.The results of the study show very good agreement between the Multiflux model and the available measured field results.展开更多
An object segment similarity function is taken into account from the continuous media frames to measure the individual streaming profit of certain segment versions of a media object.Therefore,a new segment version-bas...An object segment similarity function is taken into account from the continuous media frames to measure the individual streaming profit of certain segment versions of a media object.Therefore,a new segment version-based transcoding(SVT)mechanism is derived for a quality of service(QoS)of client-centric media streaming in wireless mobile networks.The derived function utilizes the fuzzy similarity of certain segment versions of an object.This mechanism provides the effectiveness of reduction of the stream startup latency among segment versions,and the average access of each version.Thus,the proposed segment version transcoding mechanism reduces packet loss which in turn increases streaming performance and throughput.The performance of the partitioned segment versions is simulated and some segment versions are completed.The simulation results show that the proposed mechanism outperforms the other mechanisms in average cache hit ratio and in average startup latency ratio.展开更多
This paper describes optimization process of nozzle cup based on a device for contactless code marking to rough and contaminated surfaces--semiautomatic code marker. During tests using the CFD (computational fluid dy...This paper describes optimization process of nozzle cup based on a device for contactless code marking to rough and contaminated surfaces--semiautomatic code marker. During tests using the CFD (computational fluid dynamics) software different geometry of nozzle cups were compared by such parameters as pressure, velocity and direction of flow. Goal of digital experiments was to find sprayer nozzle geometry that can keep stream of paint in diameter of 10 mm on 10-20 mm distance. Main problem is to avoid low-pressure regions around the stream. The optimal geometry of nozzle cup is designed to get adjusted code dimensions on given distance展开更多
A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D c...A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D cylindrical coordinates for the numerical simulation of the indirect-drive Inertial Confined Fusion. A number of 1-D and 2-D ignition implosion numerical simulations by using the improved LARED Integration code (ILARED) are presented which show that the 1-D numerical results are consistent with those computed by the 1-D radiation hydrodynamic code RDMG, while the simulation results of the 2-D low-mode radiative asymmetry and hydrodynamic instability growth,according to the physical analysis and anticipation, are satisfactory. The capsules driven by the sources from SGII experiments are also simulated by ILARED, and the fuel shapes agree well with the experimental results. The numerical simulations demonstrate that ILARED can be used in the simulation of the 1-D and 2-D ignition capsule implosion using the multi-group diffusion model for radiation.展开更多
An effective method for eddy current calculation has been developed for EAST’s new divertor by using ANSYS.A 3D model of a double null divertor for the EAST device was built to evaluate eddy currents and electromagne...An effective method for eddy current calculation has been developed for EAST’s new divertor by using ANSYS.A 3D model of a double null divertor for the EAST device was built to evaluate eddy currents and electromagnetic(EM)forces on these components.The main input to the model is the plasma current and poloidal field coil currents,which are loaded into the model using experimental data measured from the EAST discharges.These currents generate magnetic fields that match those producing an EAST discharge,and the time variation of these fields produces the eddy currents in the divertors,along with from the resulting EM forces.In addition,the first 10 time steps were discussed for the eddy current generation and changing trend.It indicates that a static analysis before a transient mode start can solve the eddy current origination in the initial time steps.With this method,the EM transient response of EAST’s new divertor can be predicted based on ANSYS simulations.Furthermore,the method is also an effective approach to estimate the EM results for the in-vessel components of a fusion reactor during a disruption.展开更多
In the present paper,computational fluid dynamics(CFD) simulations were executed to exploring the intent of using aspirated cascade to replace tandem cascades.Firstly,the ONERA tandem cascades were investigated,and th...In the present paper,computational fluid dynamics(CFD) simulations were executed to exploring the intent of using aspirated cascade to replace tandem cascades.Firstly,the ONERA tandem cascades were investigated,and the performance of the cascades at the design point were listed,such as diffusion factor,total pressure loss coefficient,deviation angle etc.For replacing the ONERA tandem cascades,a new cascade was designed with the codes BLADEGEN developed by the authors.The quasi 3-D calculations were carried out using the collection of programs for cascade analysis and design,MISES.The cascade was analyzed and designed by using this code.And the cascade was simulated and analyzed by commercial CFD software.It is found there is an obvious separation on the suction side.Based on the 3D CFD simulation results of the cascade without aspiration,an aspirated cascade was designed by introducing a slot on the suction side.The performance of the aspirated cascade was investigated and compared with the tandem cascades,indicated that under the same inlet condition,the total pressure loss of the single row aspirated cascade was less than that of the tandem cascades,and the outlet static pressure is higher than that of the tandem cascades.Meanwhile,the different suction slot location,suction width and suction mass flow are studied for the aspirated cascade.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903,and 51279224)
文摘Liquid sloshing is a type of free surface flow inside a partially filled water tank.Sloshing exerts a significant effect on the safety of liquid transport systems;in particular,it may cause large hydrodynamic loads when the frequency of the tank motion is close to the natural frequency of the tank.Perforated plates have recently been used to suppress the violent movement of liquids in a sloshing tank at resonant conditions.In this study,a numerical model based on OpenF OAM(Open Source Field Operation and Manipulation),an open source computed fluid dynamic code,is used to investigate resonant sloshing in a swaying tank with a submerged horizontal perforated plate.The numerical results of the free surface elevations are first verified using experimental data,and then the flow characteristics around the perforated plate and the fluid velocity distribution in the entire tank are examined using numerical examples.The results clearly show differences in sloshing motions under first-order and third-order resonant frequencies.This study provides a better understanding of the energy dissipation mechanism of a horizontal perforated plate in a swaying tank.
文摘Multiflux, a new thermal, hydrologic, and airflow model and software was being employed to solve the flow of heat, moisture, and air in and around an underground opening. The airway domain was solved with an integrated-parameter Computational Fluid Dynamic (CFD) module, which is an embedded part of the Multiflux code. The CFD model includes convection, conduction, and radiation for heat, as well as convection and diffusion for moist-ure transport in an air-filled opening. The surrounding rockmass model may be from any analytical solution, or from a complex thermal-hydrologic numerical model such as NUFT or TOUGH2. The rockmass model is interfaced to Multiflux using a novel technique called Numerical Transport Code Functionalization (NTCF). The purpose was to briefly describe the Multiflux model and show four example applications. The first example reports the results of Multiflux simulations for a mine drift, comparing calculations with CLIMSIM, a well known mine climate software, and with measured data. The second and third examples involve development ends in two coal mines. Another development-end ventilation model in Multiflux is also shown as the 4th example compared with field measurements from the Lucky Friday Mine in Idaho, USA for comparison.The results of the study show very good agreement between the Multiflux model and the available measured field results.
基金Project(2011)financially supported by Research Funds of Chonbuk National University,Korea
文摘An object segment similarity function is taken into account from the continuous media frames to measure the individual streaming profit of certain segment versions of a media object.Therefore,a new segment version-based transcoding(SVT)mechanism is derived for a quality of service(QoS)of client-centric media streaming in wireless mobile networks.The derived function utilizes the fuzzy similarity of certain segment versions of an object.This mechanism provides the effectiveness of reduction of the stream startup latency among segment versions,and the average access of each version.Thus,the proposed segment version transcoding mechanism reduces packet loss which in turn increases streaming performance and throughput.The performance of the partitioned segment versions is simulated and some segment versions are completed.The simulation results show that the proposed mechanism outperforms the other mechanisms in average cache hit ratio and in average startup latency ratio.
文摘This paper describes optimization process of nozzle cup based on a device for contactless code marking to rough and contaminated surfaces--semiautomatic code marker. During tests using the CFD (computational fluid dynamics) software different geometry of nozzle cups were compared by such parameters as pressure, velocity and direction of flow. Goal of digital experiments was to find sprayer nozzle geometry that can keep stream of paint in diameter of 10 mm on 10-20 mm distance. Main problem is to avoid low-pressure regions around the stream. The optimal geometry of nozzle cup is designed to get adjusted code dimensions on given distance
基金Supported by the National Natural Science Foundation of China under Grant Nos.10901021,91130002,11126134and11105013the China Academy of Engineering Physics Project under Grant No.2012A0202010+1 种基金the National High Technology Research and Development Program of China under Grant No.2012AA01A303the National Hi-Tech Inertial Confinement Fusion Committee of China
文摘A Lagrangian compatible radiation hydrodynamic algorithm and the nuclear dynamics computing module are developed and implemented in the LARED Integration code, which is a radiation hydrodynamic code based on the 2-D cylindrical coordinates for the numerical simulation of the indirect-drive Inertial Confined Fusion. A number of 1-D and 2-D ignition implosion numerical simulations by using the improved LARED Integration code (ILARED) are presented which show that the 1-D numerical results are consistent with those computed by the 1-D radiation hydrodynamic code RDMG, while the simulation results of the 2-D low-mode radiative asymmetry and hydrodynamic instability growth,according to the physical analysis and anticipation, are satisfactory. The capsules driven by the sources from SGII experiments are also simulated by ILARED, and the fuel shapes agree well with the experimental results. The numerical simulations demonstrate that ILARED can be used in the simulation of the 1-D and 2-D ignition capsule implosion using the multi-group diffusion model for radiation.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2013GB10200)
文摘An effective method for eddy current calculation has been developed for EAST’s new divertor by using ANSYS.A 3D model of a double null divertor for the EAST device was built to evaluate eddy currents and electromagnetic(EM)forces on these components.The main input to the model is the plasma current and poloidal field coil currents,which are loaded into the model using experimental data measured from the EAST discharges.These currents generate magnetic fields that match those producing an EAST discharge,and the time variation of these fields produces the eddy currents in the divertors,along with from the resulting EM forces.In addition,the first 10 time steps were discussed for the eddy current generation and changing trend.It indicates that a static analysis before a transient mode start can solve the eddy current origination in the initial time steps.With this method,the EM transient response of EAST’s new divertor can be predicted based on ANSYS simulations.Furthermore,the method is also an effective approach to estimate the EM results for the in-vessel components of a fusion reactor during a disruption.
基金funded by the International S&T Cooperation Program (No.2010DFB70620) of china
文摘In the present paper,computational fluid dynamics(CFD) simulations were executed to exploring the intent of using aspirated cascade to replace tandem cascades.Firstly,the ONERA tandem cascades were investigated,and the performance of the cascades at the design point were listed,such as diffusion factor,total pressure loss coefficient,deviation angle etc.For replacing the ONERA tandem cascades,a new cascade was designed with the codes BLADEGEN developed by the authors.The quasi 3-D calculations were carried out using the collection of programs for cascade analysis and design,MISES.The cascade was analyzed and designed by using this code.And the cascade was simulated and analyzed by commercial CFD software.It is found there is an obvious separation on the suction side.Based on the 3D CFD simulation results of the cascade without aspiration,an aspirated cascade was designed by introducing a slot on the suction side.The performance of the aspirated cascade was investigated and compared with the tandem cascades,indicated that under the same inlet condition,the total pressure loss of the single row aspirated cascade was less than that of the tandem cascades,and the outlet static pressure is higher than that of the tandem cascades.Meanwhile,the different suction slot location,suction width and suction mass flow are studied for the aspirated cascade.