An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to...An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.展开更多
The influences due to several AVIs (airfoil-vortex interactions) are studied by using a two-dimensional CFD (computational fluid dynamics) method. The primary goal of this effort is to assess the variation of vort...The influences due to several AVIs (airfoil-vortex interactions) are studied by using a two-dimensional CFD (computational fluid dynamics) method. The primary goal of this effort is to assess the variation of vortex center location and vortex circulation associated with sequential AVI toward an improvement of the hybrid method of CFD and prescribed wake model, which closely relates to predicting the BVI (blade-vortex interaction) noise radiated from a helicopter rotor. The representative of sequential AVI is performed by single vortex and two airfoils. Investigations with respect to vortex center location and vortex circulation after AVIs have been made by varying the miss-distance, which is the vertical distance between the airfoil leading edge and the vortex center. Correlations between miss-distance and vorticity field show that there exists complicated vortex wake flow with several vortices newly induced in 1st AVI. The pressure fluctuation amplitude clarifies that the intensity in 2nd AV1 is significantly low compared to the intensity in 1st AVI due to the influence of vortex dissipation. Simulations turned out to modify the vortex center location represented by the hybrid method using an offset value for a streamwise direction and to dissipate the vortex circulation for improving the accuracy of BVI noise prediction.展开更多
This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rota...This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.展开更多
The current work is concerned with modelling and analysis for a pilot relief valve, thus successfully bringing a systematic method for designing and analyzing similar valves. The essence of the work is to solve two im...The current work is concerned with modelling and analysis for a pilot relief valve, thus successfully bringing a systematic method for designing and analyzing similar valves. The essence of the work is to solve two important problems, one for positions of the pilot valve influenced by flow force and the other is for the opening of the relief valve governed by a thin annular plate. The computational fluid dynamics(CFD) method is used to present the flow force. Using a series of experiments, the flow rate versus pressure drop shows the rationality of the CFD results. In order to obtain the opening of relief valve with higher accuracy, the large deflection theory of thin plates is adopted. An equivalent method for replacing the concentrated force is innovatively proposed so that all of the loads of the plates can be given by a unified expression, which reduces the number of the governing equations and intermediate boundary conditions. For presenting a very simple and reliable method for solving the governing equation, an unconstrained nonlinear optimization is innovatively introduced to solve the deflection of the thin annular plate. Being verified by finite-element method(FEM) of the relief valve, the equivalent method and optimization can solve deflection of thin plates rapidly and accurately. Reflected through a complete model for the pilot relief valve, the theoretical flow rate of the pilot relief valve is consistent with experimental conclusion. Once again, the comparisons bring us insight into the accuracy of the method adopted in the current work.展开更多
When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to co...When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.展开更多
Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gat...Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method.The structure of a gate valve and a simplified structure are investigated.The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow.The results show that for all investigated open degrees and Stokes numbers(St),there are little difference of gas flow properties and flow coefficients between two placements.It is also found that the trajectories of particles for two placements are mostly identical when St << 1,making the erosion independent of placement.With the increase of St,the distinction of trajectories between placements becomes more obvious,leading to an increasing difference of the erosion distributions.Besides,the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250 μm.展开更多
This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity.A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its com...This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity.A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress.Based on the Eulerian-Eulerian two-fluid modeling framework,a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the size evolution of the sheared off microbubbles and its complex interactions with the two-phase flow structure in the wake region.Numerical predictions at various axial locations downstream of the test body were in satisfactory agreement with the experimental measurements.The captured bubbly wake structure illustrates that the bubbles may disperse as a twin-vortex tube driven by gravity effect.The predicted Sauter mean bubble diameter has confirmed the dominance of the coleascense process in the axial direction.As the bubbles develop downstream,the coleascense and breakup rate gradually reach balance,resulting in the stable bubble diameter.A close examination of the flow structures,gas void fraction distributions and the bubble size evolution provides valuable insights into the complex physical phenomenon induced by ventilated cavity.展开更多
文摘An air dense medium fluidized bed separator(ADMFBS) is used for dry beneficiation of coal using ultrafine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles.Hence, the effective density of coal particle increases and the position of coal particle changes accordingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism,spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes(i.e., triangular prism, cubical,rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.
文摘The influences due to several AVIs (airfoil-vortex interactions) are studied by using a two-dimensional CFD (computational fluid dynamics) method. The primary goal of this effort is to assess the variation of vortex center location and vortex circulation associated with sequential AVI toward an improvement of the hybrid method of CFD and prescribed wake model, which closely relates to predicting the BVI (blade-vortex interaction) noise radiated from a helicopter rotor. The representative of sequential AVI is performed by single vortex and two airfoils. Investigations with respect to vortex center location and vortex circulation after AVIs have been made by varying the miss-distance, which is the vertical distance between the airfoil leading edge and the vortex center. Correlations between miss-distance and vorticity field show that there exists complicated vortex wake flow with several vortices newly induced in 1st AVI. The pressure fluctuation amplitude clarifies that the intensity in 2nd AV1 is significantly low compared to the intensity in 1st AVI due to the influence of vortex dissipation. Simulations turned out to modify the vortex center location represented by the hybrid method using an offset value for a streamwise direction and to dissipate the vortex circulation for improving the accuracy of BVI noise prediction.
文摘This paper presents a new design of a probe adjusting device intended to position pressure and temperature probes in a flow field. 5-hole, 3-hole and temperature probes can be moved in radial direction and freely rotated about their axis. The high actuation accuracy of 3.9 ktm in radial direction and 0.09~ in angular position is validated in a 2-stage-turbine test rig which is installed at the Institute of Power Plant Technology, Steam and Gas Turbines, RWTH Aachen University. To meet the challenge to calculate the efficiency of a turbo machine which is mainly influenced by the temperature, all probe adjusting devices are positioned simultaneously and controlled by the MAS (measuring acquisition system) so that the same radial position in each stage is measured at the same time. For this purpose a new program has been developed to synchronize actuation and measurement. The slim design of 60 mm width allows measurement between the stages of turbo machines with small axial distances between vane and blade. In addition a CFD/FEA shows how the design and combination of materials compensate the thermal expansion of the engine during operation. This allows a minimal safety distance of 0.2 mm between rotor and probe to enable measurement as close to the physical boundary as possible. The actuation accuracy is demonstrated with pressure, temperature and angle distribution plots. It is also shown that the resolution of the measuring points, and therefore the actuation distances, has a large impact on the flow field analysis and should be set as high as possible. However the measuring time has to be taken into account.
文摘The current work is concerned with modelling and analysis for a pilot relief valve, thus successfully bringing a systematic method for designing and analyzing similar valves. The essence of the work is to solve two important problems, one for positions of the pilot valve influenced by flow force and the other is for the opening of the relief valve governed by a thin annular plate. The computational fluid dynamics(CFD) method is used to present the flow force. Using a series of experiments, the flow rate versus pressure drop shows the rationality of the CFD results. In order to obtain the opening of relief valve with higher accuracy, the large deflection theory of thin plates is adopted. An equivalent method for replacing the concentrated force is innovatively proposed so that all of the loads of the plates can be given by a unified expression, which reduces the number of the governing equations and intermediate boundary conditions. For presenting a very simple and reliable method for solving the governing equation, an unconstrained nonlinear optimization is innovatively introduced to solve the deflection of the thin annular plate. Being verified by finite-element method(FEM) of the relief valve, the equivalent method and optimization can solve deflection of thin plates rapidly and accurately. Reflected through a complete model for the pilot relief valve, the theoretical flow rate of the pilot relief valve is consistent with experimental conclusion. Once again, the comparisons bring us insight into the accuracy of the method adopted in the current work.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10772134 and 11172203)the National Basic Research Program of China (Grant No. 2009CB724103)
文摘When an aircraft flies at a hypersonic speed,the temperature of gas inner boundary layer near the wall is so high that the specific heat is no longer a constant but dependent upon the temperature.It is necessary to consider its effect on transition location.In this paper,the transition locations of hypersonic plane boundary layer are predicted with the improved e N method,and the results of the specific heat dependent upon temperature are compared with those of constant specific heat.The flow parameters are taken as those corresponding to the condition at a height of 40 km and the Mach numbers of oncoming flow are 6,7,and 8,respectively.It is found that the transition locations calculated by the variable specific heat are closer to the leading edge than those by the constant specific heat.The deviations in most cases are around 30 percent.All the results prove that the real gas effect should be taken into consideration when one predicts transition location for hypersonic flow.Whether the first or second mode wave determines the transition location relies on the oncoming flow Mach number and the wall condition.
基金supported by National Natural Science Foundation of China(Grant No.21276241)etc
文摘Gate valve has various placements in the practical usages.Due to the effect of gravity,particle trajectories and erosions are distinct between placements.Thus in this study,gas-solid flow properties and erosion in gate valve for horizontal placement and vertical placement are discussed and compared by using Euler-Lagrange simulation method.The structure of a gate valve and a simplified structure are investigated.The simulation procedure is validated in our published paper by comparing with the experiment data of a pipe and an elbow.The results show that for all investigated open degrees and Stokes numbers(St),there are little difference of gas flow properties and flow coefficients between two placements.It is also found that the trajectories of particles for two placements are mostly identical when St << 1,making the erosion independent of placement.With the increase of St,the distinction of trajectories between placements becomes more obvious,leading to an increasing difference of the erosion distributions.Besides,the total erosion ratio of surface T for horizontal placement is two orders of magnitudes larger than that for vertical placement when the particle diameter is 250 μm.
基金supported by the Chinese Council Scholarship (Grant No.2009611040)the Australian Research Council (Grant No.DP0877743)
文摘This paper presents a numerical study on the turbulent bubbly wakes created by the ventilated partial cavity.A semi-empirical approach is introduced to model the discrete interface of the ventilated cavity and its complex gas leakage rate induced by the local turbulent shear stress.Based on the Eulerian-Eulerian two-fluid modeling framework,a population balance approach based on MUltiple-SIze-Group (MUSIG) model is incorporated to simulate the size evolution of the sheared off microbubbles and its complex interactions with the two-phase flow structure in the wake region.Numerical predictions at various axial locations downstream of the test body were in satisfactory agreement with the experimental measurements.The captured bubbly wake structure illustrates that the bubbles may disperse as a twin-vortex tube driven by gravity effect.The predicted Sauter mean bubble diameter has confirmed the dominance of the coleascense process in the axial direction.As the bubbles develop downstream,the coleascense and breakup rate gradually reach balance,resulting in the stable bubble diameter.A close examination of the flow structures,gas void fraction distributions and the bubble size evolution provides valuable insights into the complex physical phenomenon induced by ventilated cavity.