基于数值方法,采用流体体积函数模型(volume of fluid,VOF)对10-4g0和g0重力环境下水平方管内空气-水两相流和制冷剂R134a蒸汽-液体两相流进行数值模拟,分别得到泡状流、弹状流、搅混流和环状流4种典型流型,但两种混合物在流型上存在较...基于数值方法,采用流体体积函数模型(volume of fluid,VOF)对10-4g0和g0重力环境下水平方管内空气-水两相流和制冷剂R134a蒸汽-液体两相流进行数值模拟,分别得到泡状流、弹状流、搅混流和环状流4种典型流型,但两种混合物在流型上存在较大差异。通过对数值结果的统计分析,得到两种混合物在不同重力环境下的压降分布。结果显示,微重力下两种混合物的压降均大于常重力环境,且压降都随气、液速度的增大而增大;相同工况下,空气-水的压降大于R134a蒸汽-液体两相流的压降。将得到的压降数值结果与均相流模型、Friedel模型和Chisholm模型依次进行对比。重新根据分液相雷诺数(Reynolds)将流动分为层流区、过渡区和紊流区,并对Chisholm关系式进行了修正。结果显示,修正后的压降模型能较好地预测微重力环境下的气液两相流动压降。根据汽液两相流动特性,分析了发生以上现象的原因。展开更多
文摘基于数值方法,采用流体体积函数模型(volume of fluid,VOF)对10-4g0和g0重力环境下水平方管内空气-水两相流和制冷剂R134a蒸汽-液体两相流进行数值模拟,分别得到泡状流、弹状流、搅混流和环状流4种典型流型,但两种混合物在流型上存在较大差异。通过对数值结果的统计分析,得到两种混合物在不同重力环境下的压降分布。结果显示,微重力下两种混合物的压降均大于常重力环境,且压降都随气、液速度的增大而增大;相同工况下,空气-水的压降大于R134a蒸汽-液体两相流的压降。将得到的压降数值结果与均相流模型、Friedel模型和Chisholm模型依次进行对比。重新根据分液相雷诺数(Reynolds)将流动分为层流区、过渡区和紊流区,并对Chisholm关系式进行了修正。结果显示,修正后的压降模型能较好地预测微重力环境下的气液两相流动压降。根据汽液两相流动特性,分析了发生以上现象的原因。