A new technique for ice slurry production was explored. Multiple small water-drops were formed in another immiscible chilled liquid by a single-nozzled atomizer and frozen in the fluidized bed by direct contact heat t...A new technique for ice slurry production was explored. Multiple small water-drops were formed in another immiscible chilled liquid by a single-nozzled atomizer and frozen in the fluidized bed by direct contact heat transfer. Experiments were conducted to investigate the dynamic behaviors of the ice crystal making system. The results demonstrate that the ice crystals could be produced continuously and stably in the vertical bed with the circulating coolant of initial temperature below -5℃. The size distribution of the ice crystals appears non-uniform, but is more similar and more uniform at lower oil flow rate. The mean ice crystal size rests seriously with the jet velocity and the oil flow rate. It decreases with decreasing the oil flow rate, and reaches the maximum at an intermediate jet velocity at about 16.5 m.s y. The ice crystal size is also closely related to the phenomenon of drop-coalescing, which can be alleviated considerably by reducing the flow rate or lowering the temperature of the carrier oil. However, optimization of liquid-liquid atomization is a more effective approach to produce fine ice crystals of desired size.展开更多
The main activities in the joint expedition between CHINARE and ANARE on Amery ice shelf are introduced. Five day continuous GPS observation data collected on the site which locates at the frontal part of Amery ice sh...The main activities in the joint expedition between CHINARE and ANARE on Amery ice shelf are introduced. Five day continuous GPS observation data collected on the site which locates at the frontal part of Amery ice shelf was processed with precise point positioning (PPP) technology based on precise products from IGS. Velocity of the surface ice flow on Amery can be derived from the PPP solution. Preliminary result shows that the surface ice flow velocity of the site is 2.25 meters per day, the motion direction is northeastward. Semidiurnal oceanic tide and diurnal oceanic tide signal of that site can be recovered from the height variation series of PPP solution. These above solutions can be used to the consequent mass balance calculation.展开更多
To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples wer...To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples were collected from the Laohugou Glacial catchment in the Shule River basin northwestern China during the 2013 ablation seasons and analyzed their H- and O-isotope composition. The results showed that the isotopic composition of precipitation in the Qilianshan Station in the Laohugou Glacial catchment was remarkable variability. Correspondingly, a higher slope of δ180-δD diagram, with an average of 8.74, is obtained based on the precipitation samples collected on the Glacier No.la, mainly attributed to the lower temperature on the glacier surface. Because of percolation and elution, the bottom of the firn the isotopic composition at is nearly steady. The 6180 /altitude gradients for precipitation and melt water were -o.37%o/100 m and -o.34%o/100 m, respectively Exposed to the air and influenced by strong ablation and evaporation, the isotopic values and the 6180 vs 6D diagram of the glacial surface ice show no altitudinal effect, indicating that glacier ice has the similar origins with the firn. The variation of isotopic composition in the melt water, varying from -l0.7‰ to -16.9‰ (8180) and from -61.1%o to -122.1%o (6D) indicates the recharging of snowmelt and glacial ice melt water produced at different altitudes. With a mean value of -13.3‰ for 8180 and -89.7‰ for 8D, the isotopic composition of the stream water is much closer to the melt water, indicating that stream water is mainly recharged by the ablation water. Our results of the stable isotopic compositions in natural water in the Laohugou Glacial catchment indicate the fractionations and the smoothing fluctuations of the stable isotopes during evaporation, infiltration and mixture.展开更多
Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe...Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.展开更多
Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For thi...Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For this reason, experimental investigations have been carried out using flight tests or icing tunnels. However, it is too expensive, dangerous, and difficult to set actual icing conditions. Hence, computational fluid dynamics is useful to predict ice accretion. A rotor blade is one of jet engine components where ice accretes. Therefore, the authors focus on the ice accretion on a rotor blade in this study. Three-dimensional icing phenomena on the rotor blade of a commercial axial blower are computed here, and ice accretion on the rotor blade is numerically investigated.展开更多
基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20060286034)
文摘A new technique for ice slurry production was explored. Multiple small water-drops were formed in another immiscible chilled liquid by a single-nozzled atomizer and frozen in the fluidized bed by direct contact heat transfer. Experiments were conducted to investigate the dynamic behaviors of the ice crystal making system. The results demonstrate that the ice crystals could be produced continuously and stably in the vertical bed with the circulating coolant of initial temperature below -5℃. The size distribution of the ice crystals appears non-uniform, but is more similar and more uniform at lower oil flow rate. The mean ice crystal size rests seriously with the jet velocity and the oil flow rate. It decreases with decreasing the oil flow rate, and reaches the maximum at an intermediate jet velocity at about 16.5 m.s y. The ice crystal size is also closely related to the phenomenon of drop-coalescing, which can be alleviated considerably by reducing the flow rate or lowering the temperature of the carrier oil. However, optimization of liquid-liquid atomization is a more effective approach to produce fine ice crystals of desired size.
文摘The main activities in the joint expedition between CHINARE and ANARE on Amery ice shelf are introduced. Five day continuous GPS observation data collected on the site which locates at the frontal part of Amery ice shelf was processed with precise point positioning (PPP) technology based on precise products from IGS. Velocity of the surface ice flow on Amery can be derived from the PPP solution. Preliminary result shows that the surface ice flow velocity of the site is 2.25 meters per day, the motion direction is northeastward. Semidiurnal oceanic tide and diurnal oceanic tide signal of that site can be recovered from the height variation series of PPP solution. These above solutions can be used to the consequent mass balance calculation.
基金the projects of National Major Scientific Research Project (2013CBA01806)National Natural Science Foundation of China (Grant Nos. 41271085,41130641)open fund project of State Key Laboratory of Cryospheric Science (SKLCS-OP2013-05)
文摘To evaluate isotopic tracers at natural abundances by providing basic isotope data of the hydrological investigations and assessing the impacts of different factors on the water cycle, a total of 197 water samples were collected from the Laohugou Glacial catchment in the Shule River basin northwestern China during the 2013 ablation seasons and analyzed their H- and O-isotope composition. The results showed that the isotopic composition of precipitation in the Qilianshan Station in the Laohugou Glacial catchment was remarkable variability. Correspondingly, a higher slope of δ180-δD diagram, with an average of 8.74, is obtained based on the precipitation samples collected on the Glacier No.la, mainly attributed to the lower temperature on the glacier surface. Because of percolation and elution, the bottom of the firn the isotopic composition at is nearly steady. The 6180 /altitude gradients for precipitation and melt water were -o.37%o/100 m and -o.34%o/100 m, respectively Exposed to the air and influenced by strong ablation and evaporation, the isotopic values and the 6180 vs 6D diagram of the glacial surface ice show no altitudinal effect, indicating that glacier ice has the similar origins with the firn. The variation of isotopic composition in the melt water, varying from -l0.7‰ to -16.9‰ (8180) and from -61.1%o to -122.1%o (6D) indicates the recharging of snowmelt and glacial ice melt water produced at different altitudes. With a mean value of -13.3‰ for 8180 and -89.7‰ for 8D, the isotopic composition of the stream water is much closer to the melt water, indicating that stream water is mainly recharged by the ablation water. Our results of the stable isotopic compositions in natural water in the Laohugou Glacial catchment indicate the fractionations and the smoothing fluctuations of the stable isotopes during evaporation, infiltration and mixture.
文摘Icing(or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body.It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents.Although various anti-icing and deicing systems have been developed,such accidents still occur.Therefore,it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine.However,flight tests for ice accretion are very expensive,and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur.Therefore,it is expected that computational fluid dynamics(CFD),which can estimate ice accretion in various climate conditions,will be a useful way to predict and understand the ice accretion phenomenon.On the other hand,although the icing caused by super-cooled large droplets(SLD) is very dangerous,the numerical method has not been established yet.This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature.In the present study,we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing,and the code is applied to a fan rotor blade.The numerical results with and without the SLD icing model are compared.Through this study,the influence of the SLD icing model is numerically clarified.
文摘Ice accretion is the phenomenon that super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and airfoils leads to performance degradation and severe accidents. For this reason, experimental investigations have been carried out using flight tests or icing tunnels. However, it is too expensive, dangerous, and difficult to set actual icing conditions. Hence, computational fluid dynamics is useful to predict ice accretion. A rotor blade is one of jet engine components where ice accretes. Therefore, the authors focus on the ice accretion on a rotor blade in this study. Three-dimensional icing phenomena on the rotor blade of a commercial axial blower are computed here, and ice accretion on the rotor blade is numerically investigated.