It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions...It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions. For calculating the wave and current loads on upright small-long-size pipe, the Morrison equation is practical and applied. Jacket platform is a kind of offshore space frame structure comprised of lots of poles that are circular cylinders with small diameter and in the oblique status relative to seabed. In this paper, based on Morrison equation, the specific method and procedure calculating the wave and current loads on launching jacket are given and applied on a typical launching jacket. The instance shows that the method and procedure are convenient and make the calculation and analysis in good agreement with actual launching.展开更多
To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ...To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.展开更多
Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To addr...Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.展开更多
This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a ...This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.展开更多
The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are...The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.展开更多
This work is focused on the theoretical investigation of internal leakage of a newly developed pi lotscale fluid switcherenergy recovery device (FSERD) for reverse osmosis (RO) system. For the purpose of in creasi...This work is focused on the theoretical investigation of internal leakage of a newly developed pi lotscale fluid switcherenergy recovery device (FSERD) for reverse osmosis (RO) system. For the purpose of in creasing FSERD efficiency and reducing the operating cost of RO, it is required to control the internal leakage in a low level. In this work, the internal leakage rates at different leakage gaps and retentate brine pressures are investigated by computational fluid dynamics (CFD) method and validating experiments. It is found that the internal leak age has a linear relationship with the retentate brine pressure and a polynomial relationship with the scale of leakage gap. The results of the present work imply that low internal leakage and high retentate brine pressure bring benefits to achieve high FSRD efficiency.展开更多
Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the aut...Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.展开更多
In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate co...In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.展开更多
Traffic-related pollutants adversely affect air quality, especially in regions near major roadways. The vehicleinduced turbulence(VIT) is a significant factor that controls the initial dilution, dispersion, and ultima...Traffic-related pollutants adversely affect air quality, especially in regions near major roadways. The vehicleinduced turbulence(VIT) is a significant factor that controls the initial dilution, dispersion, and ultimately the chemical and physical fate of pollutants by altering the conditions in the microenvironment. This study used a computational fluid dynamics(CFD) software FLUENT to model the vehicle-induced turbulence(VIT) generated on roadways, with a focus on impact of vehicle-vehicle interactions, traffic density and vehicle composition on turbulent kinetic energy(TKE). We show, for the first time, that the overall TKE from multiple vehicles traveling in series can be estimated by superimposing the TKE of each vehicle, without considering the distance between them while the distance is greater than one vehicle length. This finding is particularly significant since it enables a new approach to VIT simulations where the overall TKE is calculated as a function of number of vehicles. We found that the interactions between vehicles traveling next to each other in adjacent lanes are insignificant,regardless the directions of the traffic flow. Consequently, simulations of different traffic scenarios can be substantially simplified by treating two-way traffic as one-way traffic, with less than 5% difference in the overall volume-averaged TKE. We also developed equations that allow the estimation of the overall volume-averaged TKE as a function of the number and the type of vehicles.展开更多
As a high gravity(HIGEE)unit,the rotating packed bed(RPB)uses centrifugal force to intensify mass transfer.Zigzag rotating bed(RZB)is a new type of HIGEE unit.The rotor of RZB consists of stationary discs and rotating...As a high gravity(HIGEE)unit,the rotating packed bed(RPB)uses centrifugal force to intensify mass transfer.Zigzag rotating bed(RZB)is a new type of HIGEE unit.The rotor of RZB consists of stationary discs and rotating discs,forming zigzag channels for liquid-gas flow and mass transfer.As in RPBs,some hydrodynamic behavior in RZB is interesting but no satisfactory explanation.In this study,the experiments were carried on in a RZB unit with a rotor of 600 mm in diameter using air-water system.The gas pressure drop and power consumption were measured with two types of rotating baffle for RZB rotors,one with perforations and another with shutter openings. The circumferential velocities of gas were measured with a five-hole Pitot probe.The pressure drop decreased rapidly when the liquid was introduced to the rotor,because the circumferential velocity of the liquid droplets was lower than that of the gas,reducing the circumferential velocity of gas and the centrifugal pressure drop.The power consumption decreased first when the gas entered the RZB rotor,because the gas with higher circumferential velocity facilitates the rotation of baffles.展开更多
An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber fi...An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber filter medium. Mixture model was adopted. The algorithm of particle interception in the whole size of fiber filter medium was derived and UDF(User Defined Function) that described kinds of particle filtering mechanisms in filter fibrous media was added to the Fluent default conservation equation as source term for simulation. The inertial resistance of the filter was taken into consideration, which provided a more precise measurement of the smoke flow and the particle interception in the filter under higher smoke speed conditions. The commercial software, Fluent 6.3, was used to simulate the smoke flow and particle interception in the filter in a single suction. The velocity and pressure profiles of smoke or nicotine particle in the filter, as well as nicotine particle volume fraction profile were well simulated. Finally, the comparisons of nicotine particle filtration efficiency between Fluent simulation results in this work and experimental results, as well as the model prediction in the literature were made to validate the simulation model. The comparisons showed that the particle entrapment model from simulation results was in good agreement with that from the experimental results. In addition, the Fluent simulation results are closer to reality both at the beginning and the end of the smoke process comparing with the model predicted results in the literature.展开更多
This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its ow...This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its own internal structure of motion, which is definite organization of motion, rather than a "molecular chaos", known from the fluid statics. The paper introduces the new notion of structures vector fields of power and momentum and shows every Newtonian fluid flows are dual in character. It shows that the flow of Newtonian fluid has a dual character. It demonstrates on models and further in mathematical interpretation of physical phenomena. It introduces, on the one hand, the cycloidal motion model into the fluid mechanics, ad on the other hand an addition to the known, the classical model of Poiseuille laminar motion. The theory of dualism (double nature of physical phenomena) allows the description of selected characteristics of the flow, either by using the theory ofcycloidal motion (semicycloidal), or by using the supplemented theory of laminar motion. The dualism theory is useful to describe each type of flows both, laminar and turbulent. This paper is only an introduction to the theory. It has been assigned number 1. It has been granted a high priority, since it contains basic concepts that will be used in others, following papers of long cycle.展开更多
The characteristics of the dual bluff body vortex shedding is investigated, and the possibility to use dual bluff body combinations to strengthen the hydrodynamic vibration around the bluff body objects is explored. T...The characteristics of the dual bluff body vortex shedding is investigated, and the possibility to use dual bluff body combinations to strengthen the hydrodynamic vibration around the bluff body objects is explored. The numerical and experimental approaches were utilized to examine the time dependent flow field and the pressure oscillation around the bluff bodies. The numerical data were obtained by the advanced large eddy simulation model. The experiment was conducted on a laboratory scale of Karman vortex flowmeter with 40 mm diameter. It is revealed that the optimized dual bluff body combinations strengthened the hydrodynamic vibration. It was also found that the hydrodynamic vibration with 180° phase difference occurred at the axisymmetric points of circular pipe on the lateral faces of the equilateral triangle-section bluff bodies. Using the dual bluff body configuration and the differential sensing technique, a novel prototype of vortex flowmeter with excellent noise immunity and improved sensibility was developed.展开更多
This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine...This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.展开更多
基金Supported by Item of Doctor Subject of Colleges and University (No.2000014125) and the Education Office of Liaoning Province (No.05l091).
文摘It’s very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions. For calculating the wave and current loads on upright small-long-size pipe, the Morrison equation is practical and applied. Jacket platform is a kind of offshore space frame structure comprised of lots of poles that are circular cylinders with small diameter and in the oblique status relative to seabed. In this paper, based on Morrison equation, the specific method and procedure calculating the wave and current loads on launching jacket are given and applied on a typical launching jacket. The instance shows that the method and procedure are convenient and make the calculation and analysis in good agreement with actual launching.
基金The National Natural Science Foundation of China(No.51979040)。
文摘To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.
文摘Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.
文摘This paper reports a study on the role of fluid flow pattern and dynamic pressure on the permeate flux through a micro filtration membrane in laboratory scale.For this purpose,a dead-end membrane cell equipped with a marine type impeller was used.The impeller was set to rotate in the clockwise and counter clockwise directions with the same angular velocities in order to illustrate the effect of rotation direction on permeate flux.Consequently, permeate fluxes were measured at various impeller rotational speeds.The computational fluid dynamics(CFD)predicted dynamic pressure was related to the fluxes obtained in the experiments.Using the CFD modeling,it is proven that the change in dynamic pressure upon the membrane surface has direct effect on the permeate flux.
基金Project supported by the National Basic Research Program (973) of China (No.2006CB705400)the National Natural Science Foundation of China (No.50575200)
文摘The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.
基金Supported by the Research and Development Programs of Tianjin(10JCYBJC04700,10ZCKFSH02100)
文摘This work is focused on the theoretical investigation of internal leakage of a newly developed pi lotscale fluid switcherenergy recovery device (FSERD) for reverse osmosis (RO) system. For the purpose of in creasing FSERD efficiency and reducing the operating cost of RO, it is required to control the internal leakage in a low level. In this work, the internal leakage rates at different leakage gaps and retentate brine pressures are investigated by computational fluid dynamics (CFD) method and validating experiments. It is found that the internal leak age has a linear relationship with the retentate brine pressure and a polynomial relationship with the scale of leakage gap. The results of the present work imply that low internal leakage and high retentate brine pressure bring benefits to achieve high FSRD efficiency.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 41176074, 51379043 and 51409063)Acknowledgement This project was supported by the National Natural Science Foundation of China (Grant Nos. 41176074,51379043 and 51409063) and was conducted in response to the great support received from a basic research project entitled "Multihull Ship Technology Key Laboratory of Fundamental Science for National Defence", which was conducted at Harbin Engineering University. The authors would like to extend their sincere gratitude to their colleagues in the towing tank laboratory.
文摘Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.
文摘In this paper, a 3D time domain technique is adopted to calculate the coupled hydrodynamic interaction between two bodies without flare in waves. For verifying the code, two same cylinders are selected to calculate coupled hydrodynamic effects by comparison with the results obtained by 3D frequency method which has been proved to be efficient for solving such problems. In order to improve efficiency of calculation, the effect of history time has been discussed, and an improved method is presented. Moreover, the effect of lateral separation distance is also discussed in detail. The technique developed here may serve as a more rigorous tool to analyze the related transient problems of two ships doing underway replenishment in waves.
基金financial support from Environment Canada and the Government of Ontario (72021622) for a scholarship to YK
文摘Traffic-related pollutants adversely affect air quality, especially in regions near major roadways. The vehicleinduced turbulence(VIT) is a significant factor that controls the initial dilution, dispersion, and ultimately the chemical and physical fate of pollutants by altering the conditions in the microenvironment. This study used a computational fluid dynamics(CFD) software FLUENT to model the vehicle-induced turbulence(VIT) generated on roadways, with a focus on impact of vehicle-vehicle interactions, traffic density and vehicle composition on turbulent kinetic energy(TKE). We show, for the first time, that the overall TKE from multiple vehicles traveling in series can be estimated by superimposing the TKE of each vehicle, without considering the distance between them while the distance is greater than one vehicle length. This finding is particularly significant since it enables a new approach to VIT simulations where the overall TKE is calculated as a function of number of vehicles. We found that the interactions between vehicles traveling next to each other in adjacent lanes are insignificant,regardless the directions of the traffic flow. Consequently, simulations of different traffic scenarios can be substantially simplified by treating two-way traffic as one-way traffic, with less than 5% difference in the overall volume-averaged TKE. We also developed equations that allow the estimation of the overall volume-averaged TKE as a function of the number and the type of vehicles.
基金Supported by the Natural Science Foundation of Zhejiang Province(Y406239)
文摘As a high gravity(HIGEE)unit,the rotating packed bed(RPB)uses centrifugal force to intensify mass transfer.Zigzag rotating bed(RZB)is a new type of HIGEE unit.The rotor of RZB consists of stationary discs and rotating discs,forming zigzag channels for liquid-gas flow and mass transfer.As in RPBs,some hydrodynamic behavior in RZB is interesting but no satisfactory explanation.In this study,the experiments were carried on in a RZB unit with a rotor of 600 mm in diameter using air-water system.The gas pressure drop and power consumption were measured with two types of rotating baffle for RZB rotors,one with perforations and another with shutter openings. The circumferential velocities of gas were measured with a five-hole Pitot probe.The pressure drop decreased rapidly when the liquid was introduced to the rotor,because the circumferential velocity of the liquid droplets was lower than that of the gas,reducing the circumferential velocity of gas and the centrifugal pressure drop.The power consumption decreased first when the gas entered the RZB rotor,because the gas with higher circumferential velocity facilitates the rotation of baffles.
基金Supported by Technology Center,China Tobacco Hunan Industrial Co.,Ltd.(KY2014KF0002)the National Natural Science Foundation of China(21536003)+2 种基金Innovative Research Team Development Plan-Ministry of Education of China(IRT1238)Key project of international®ional scientific and technology plan(2014WK2037)China Outstanding Engineer Training Plan for Students of Chemical Engineering&Technology in Hunan University(2011-40)
文摘An improved CFD model of gas flow and particle interception in a fiber material which fiber size is Y-shape was developed in this work. The porous medium model was used to build the model of the whole size of fiber filter medium. Mixture model was adopted. The algorithm of particle interception in the whole size of fiber filter medium was derived and UDF(User Defined Function) that described kinds of particle filtering mechanisms in filter fibrous media was added to the Fluent default conservation equation as source term for simulation. The inertial resistance of the filter was taken into consideration, which provided a more precise measurement of the smoke flow and the particle interception in the filter under higher smoke speed conditions. The commercial software, Fluent 6.3, was used to simulate the smoke flow and particle interception in the filter in a single suction. The velocity and pressure profiles of smoke or nicotine particle in the filter, as well as nicotine particle volume fraction profile were well simulated. Finally, the comparisons of nicotine particle filtration efficiency between Fluent simulation results in this work and experimental results, as well as the model prediction in the literature were made to validate the simulation model. The comparisons showed that the particle entrapment model from simulation results was in good agreement with that from the experimental results. In addition, the Fluent simulation results are closer to reality both at the beginning and the end of the smoke process comparing with the model predicted results in the literature.
文摘This paper introduces to fluid state physics (fluid mechanics) a new interpretation of physical phenomena taking place in a fluid in motion. It introduces the base of a new theory claiming that every flow has its own internal structure of motion, which is definite organization of motion, rather than a "molecular chaos", known from the fluid statics. The paper introduces the new notion of structures vector fields of power and momentum and shows every Newtonian fluid flows are dual in character. It shows that the flow of Newtonian fluid has a dual character. It demonstrates on models and further in mathematical interpretation of physical phenomena. It introduces, on the one hand, the cycloidal motion model into the fluid mechanics, ad on the other hand an addition to the known, the classical model of Poiseuille laminar motion. The theory of dualism (double nature of physical phenomena) allows the description of selected characteristics of the flow, either by using the theory ofcycloidal motion (semicycloidal), or by using the supplemented theory of laminar motion. The dualism theory is useful to describe each type of flows both, laminar and turbulent. This paper is only an introduction to the theory. It has been assigned number 1. It has been granted a high priority, since it contains basic concepts that will be used in others, following papers of long cycle.
基金Supported by the National Natural Science Foundation of China (No. 59835160) and Scientific Research Foundation of State Education Ministry for Returned Overseas Chinese Scholars.
文摘The characteristics of the dual bluff body vortex shedding is investigated, and the possibility to use dual bluff body combinations to strengthen the hydrodynamic vibration around the bluff body objects is explored. The numerical and experimental approaches were utilized to examine the time dependent flow field and the pressure oscillation around the bluff bodies. The numerical data were obtained by the advanced large eddy simulation model. The experiment was conducted on a laboratory scale of Karman vortex flowmeter with 40 mm diameter. It is revealed that the optimized dual bluff body combinations strengthened the hydrodynamic vibration. It was also found that the hydrodynamic vibration with 180° phase difference occurred at the axisymmetric points of circular pipe on the lateral faces of the equilateral triangle-section bluff bodies. Using the dual bluff body configuration and the differential sensing technique, a novel prototype of vortex flowmeter with excellent noise immunity and improved sensibility was developed.
文摘This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.