The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions....The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions. Most prior research uses a linear adsorption model which cannot capture these effects, The Maragoni migration of a liquid drop settling through a surfactant solution is examined by using Langmuir framework. The solution concentration Ceq is assumed large enough for the surfactant mass transfer to be adsorption-controlled. Langmuir model generates non-linear Marangoni stresses which diverge in the limit of approaching ∝, strongly retarding U'.展开更多
High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of ...High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lea, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lea and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that: (i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm^3 can be easily realized for as-mtSOFC with single- and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with/cac(2 mm, 40 mm) is determined for three representative (tin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.展开更多
A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation ...A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.展开更多
A new type of multi-tube column, in which a novel internal-structure is installed in the bed of random packing, has been invented. The internal-structure reduces the hydraulic radius of the column and adjusts the gas/...A new type of multi-tube column, in which a novel internal-structure is installed in the bed of random packing, has been invented. The internal-structure reduces the hydraulic radius of the column and adjusts the gas/liquid flow so that the liquid maldistribution is greatly abated. A mathematical model with boundary conditions based on close-open mechanism at the internal-structure was established to study the hydraulic behavior of such a column and experiments were carded out to verify the applicability of the model. Predictions from the model agreed well with experimental results. The optimal ratio of the hydraulic diameter of the new multi-tube column to the packing element diameter is found to be 17.5 to 23.3 by employing the optimization method of nonlinear programming. And this new type of multi-tube column opens a new way for random packing columns to be scaled up for industry.展开更多
As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was...As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.展开更多
Aimed at attaining to an integrated and effective pattern to guide the port design process, this paper puts forward a new conception of feature solution, which is based on the parameterized feature modeling. With this...Aimed at attaining to an integrated and effective pattern to guide the port design process, this paper puts forward a new conception of feature solution, which is based on the parameterized feature modeling. With this solution, the overall port pre-design process can be conducted in a virtual pattern. Moreover, to evaluate the advantages of the new design pattern, an application of port system has been involved in this paper; and in the process of application a computational fluid dynamic analysis is concerned. An ideal effect of cleanness, high efficiency and high precision has been achieved.展开更多
Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the tech...Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.展开更多
In modeling fluidized bed gasification experiments,equilibrium and CFD models are valuable options.The existence of multi-dimensional effects inside the reactor vessel due to the kinetics of the process and the fluid ...In modeling fluidized bed gasification experiments,equilibrium and CFD models are valuable options.The existence of multi-dimensional effects inside the reactor vessel due to the kinetics of the process and the fluid dynamics phenomena could result in deviation from the zero-dimensional assumption.Complex models integrating kinetics and hydrodynamics are being developed by using a computer fluid dynamics(CFD)approach.The objective of this investigation is to assess and compare the adequacy of zero-dimensional and CFD approaches in modeling fluidized bed gasification regarding a semi-industrial scale(numerical results are validated under experimental runs).Results show that the zero-dimensional model based on the approach of dual stage equilibrium performs reasonably well in adequately predicting the product gas composition at different operating conditions and for different feedstocks,although with quantitative discrepancy.Furthermore,the discrepancy depends on the oxygen content of the oxidation agent and on the steam-to biomass ratio decreasing when these parameters increased.CFD models provide deeper information being able to estimate the syngas composition or other operating parameter at any point of space and time.Despite of some quantitative discrepancy,the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the determining design conditions simulation.展开更多
文摘The terminal velocity of a liquid droplet settling in a sulfactant solution has been studied for the non-linear adsorption Langmuir frameworks accounting for monolayer saturation and non-ideal surfactant interactions. Most prior research uses a linear adsorption model which cannot capture these effects, The Maragoni migration of a liquid drop settling through a surfactant solution is examined by using Langmuir framework. The solution concentration Ceq is assumed large enough for the surfactant mass transfer to be adsorption-controlled. Langmuir model generates non-linear Marangoni stresses which diverge in the limit of approaching ∝, strongly retarding U'.
基金This work was supported by the National Natural Science Foundation of China (No.11374272 and No.11574284) and the Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lea, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lea and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that: (i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm^3 can be easily realized for as-mtSOFC with single- and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with/cac(2 mm, 40 mm) is determined for three representative (tin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.
基金Project(51275499)supported by the National Natural Science Foundation of ChinaProject(2013CB035404)supported by the National Basic Research Program("973" Program)of ChinaProject(51221004)supported by the Science Fund for Creative Research Groups,National Natural Science Foundation of China
文摘A new electro-hydraulic exciter that consists of rotary valve and micro-displacement double-functioned hydraulic cylinder was proposed to realize different kinds of waveforms.Calculated fluid dynamics(CFD) simulation of rotary valve orifice reveals that orifice exists the two-throttle phenomenon.According to the finding,the revised flow area model was established.Vibration waveforms analysis was carried out by means of mathematic model and the related experiments were validated.Furthermore,as a new analysis indicator,saturation percentage was introduced first.The experimental results indicate that the revised flow area model is more accurate compared to the original one,and vibration waveforms can be optimized through suitable spool parameters and the revised cylinder structure.
文摘A new type of multi-tube column, in which a novel internal-structure is installed in the bed of random packing, has been invented. The internal-structure reduces the hydraulic radius of the column and adjusts the gas/liquid flow so that the liquid maldistribution is greatly abated. A mathematical model with boundary conditions based on close-open mechanism at the internal-structure was established to study the hydraulic behavior of such a column and experiments were carded out to verify the applicability of the model. Predictions from the model agreed well with experimental results. The optimal ratio of the hydraulic diameter of the new multi-tube column to the packing element diameter is found to be 17.5 to 23.3 by employing the optimization method of nonlinear programming. And this new type of multi-tube column opens a new way for random packing columns to be scaled up for industry.
基金Projects(51475464,51175500) supported by the National Natural Science Foundation of China
文摘As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.
文摘Aimed at attaining to an integrated and effective pattern to guide the port design process, this paper puts forward a new conception of feature solution, which is based on the parameterized feature modeling. With this solution, the overall port pre-design process can be conducted in a virtual pattern. Moreover, to evaluate the advantages of the new design pattern, an application of port system has been involved in this paper; and in the process of application a computational fluid dynamic analysis is concerned. An ideal effect of cleanness, high efficiency and high precision has been achieved.
基金Sponsored by the National Natural Science Foundation of China (Grant No.5047028 and 50476017)
文摘Numerical simulation on conjugate heat transfer of an internal cooled turbine vane was carried out. Numerical techniques employed included the third-order accuracy TVD scheme, multi-block structured grids and the technique of arbitrary curved mesh. Comparison between results of commercial CFD codes with several turbulence models and those of this code shows that it is incorrect of commercial CFD codes to predict the thermal boundary layer with traditional turbulence models, and that turbulence models considering transition lead to more accurate heat transfer in thermal boundary layer with some reliability and deficiency yet. The results of this code are close to those of CFX with transition model.
基金support given to grant SFRH/BD/86068/2012project PTDC/AAC-AMB/103119/2008ALTERCEXAPOCTEC Program
文摘In modeling fluidized bed gasification experiments,equilibrium and CFD models are valuable options.The existence of multi-dimensional effects inside the reactor vessel due to the kinetics of the process and the fluid dynamics phenomena could result in deviation from the zero-dimensional assumption.Complex models integrating kinetics and hydrodynamics are being developed by using a computer fluid dynamics(CFD)approach.The objective of this investigation is to assess and compare the adequacy of zero-dimensional and CFD approaches in modeling fluidized bed gasification regarding a semi-industrial scale(numerical results are validated under experimental runs).Results show that the zero-dimensional model based on the approach of dual stage equilibrium performs reasonably well in adequately predicting the product gas composition at different operating conditions and for different feedstocks,although with quantitative discrepancy.Furthermore,the discrepancy depends on the oxygen content of the oxidation agent and on the steam-to biomass ratio decreasing when these parameters increased.CFD models provide deeper information being able to estimate the syngas composition or other operating parameter at any point of space and time.Despite of some quantitative discrepancy,the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the determining design conditions simulation.