The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. T...The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.展开更多
基金Funded by the Natural Science Foundation of China (No. 50775081)the National High-tech R&D (863) Program No. 2006AA09Z238)the NCET-07-0330, State Education Ministry.
文摘The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.