To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the ...To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.展开更多
Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at hig...Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.展开更多
As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using...As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using the computational fluid dynamics (CFD) model,landscape ecological principles and Geographical Information System (GIS).Based on the influencing factors of topography,building density and orientation,Shou Mountain,Longding Mountain and the Taizi River were selected as the urban ventilation paths to promote wind and oxygen circulation.Oxygen concentration around the green spaces gradually decreased with wind speed increase and wind direction change.There were obvious negative correlation relationships between the oxygen dispersion concentration and urban layout factors such as the building plot ratio and building density.Comparison with the field measurements found that there was significant correlation relationship between simulated oxygen concentration and field measurements (R 2=0.6415,p<0.001),moreover,simulation precision was higher than 92%,which indicated CFD model was effective for urban oxygen concentration simulation.Only less than 10% areas in Liaoyang City proper needed more green space urgently to improve oxygen concentration,mainly concentrated in Baitai and west Wensheng districts.Based on land-scape ecology principle,green space planning at different spatial scales were proposed to create a green space network system for Liaoyang City,including features such as green wedges,green belts and parks.Totally,about 2012 ha of green space need to be constructed as oxygen sources and ventilation paths.Compared with the current green space pattern,proposed green space planning could improve oxygen concentration obviously.The CFD model and research results in this paper could provide an effective way and theory support for sustainable development of urban green space.展开更多
Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this pape...Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.展开更多
基金The National Natural Science Foundation of China(No.51979040)。
文摘To verify the accuracy of weir and orifice formula and analyze the hydraulic characteristics of exchange flow in a manhole,a three-dimensional numerical model was proposed to assess the exchange flow rate between the surface and sewer pipe systems based on the real-world scale model.The hydrodynamic model is based on the three-dimensional Navier-Stokes equations including the standard k-εmodel for turbulence processes,and the volume of fluid(VOF)method for capturing the free surface.The results of the computational fluid dynamics(CFD)simulation are compared with the conventional overflow equations,showing that the weir and orifice formula is appropriate to determine the exchange flow rate between two systems in this specific study case.Streamlines and velocity contours at the center profile under both the inflow and surcharge conditions show that the exchange flow is directly related to the water level on the surface and the junction area between the manhole and right pipe.The results demonstrate the potential application of CFD in analyzing the interaction of urban flood flows,which can provide much clearer details of the interaction process.
文摘Landslides are one of the most widespread and dangerous phenomena in the urbanized territories. In Moscow they affect about 3% of the most valuable territory, including churches and historical buildings located at high banks of the Moskva River. Recently the landslide activation occurred. Normal functioning of city infrastructure and implementation of effective slope protection measures require special landslide monitoring. Mechanical-mathematical model of high viscous fluid was applied for the landslide-prone slopes modeling. Equation of continuityand an approximatedNavier-Stockes equation f or slow motions in a thin layer were used. The results of modelling give possibility to define the landslide section with upmost velocity that should be monitored in the first place. Some important parameters used for numerical modelling can be defined from monitoring data.
基金Under the auspices of National Key Technology Research and Development Program of China (No.2008BAJ10B01-01)National Natural Science Foundation of China (No.40801069)
文摘As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using the computational fluid dynamics (CFD) model,landscape ecological principles and Geographical Information System (GIS).Based on the influencing factors of topography,building density and orientation,Shou Mountain,Longding Mountain and the Taizi River were selected as the urban ventilation paths to promote wind and oxygen circulation.Oxygen concentration around the green spaces gradually decreased with wind speed increase and wind direction change.There were obvious negative correlation relationships between the oxygen dispersion concentration and urban layout factors such as the building plot ratio and building density.Comparison with the field measurements found that there was significant correlation relationship between simulated oxygen concentration and field measurements (R 2=0.6415,p<0.001),moreover,simulation precision was higher than 92%,which indicated CFD model was effective for urban oxygen concentration simulation.Only less than 10% areas in Liaoyang City proper needed more green space urgently to improve oxygen concentration,mainly concentrated in Baitai and west Wensheng districts.Based on land-scape ecology principle,green space planning at different spatial scales were proposed to create a green space network system for Liaoyang City,including features such as green wedges,green belts and parks.Totally,about 2012 ha of green space need to be constructed as oxygen sources and ventilation paths.Compared with the current green space pattern,proposed green space planning could improve oxygen concentration obviously.The CFD model and research results in this paper could provide an effective way and theory support for sustainable development of urban green space.
基金partially supported by the Fundamental Research Funds for the Central Universities under Grant No.2015JBM009the National Natural Science Foundation of China(NSFC) under Grant 61602030 U1404611,61301081+1 种基金the Project Funded by China Postdoctoral Science Foundation under Grant No.2016T90031,2015M570028 and 2015M580970the Program for Science & Technology Innovation Talents in the University of Henan Province under Grant No.16HASTIT035
文摘Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.