During the exploitation of offshore oil and gas,it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system.The flow pattern and pressure ...During the exploitation of offshore oil and gas,it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system.The flow pattern and pressure fluctuation of severe slugging were studied in an experimental simulation system with inner diameter of 0.051 m.It is found that severe slugging can be divided into three severe slugging regimes:regime I at low gas and liquid flow rates with large pressure fluctuation,intermittent flow of liquid and gas in the riser,and apparent cutoff of liquid phase,regime II at high gas flow rate with non-periodic fluctuation and discontinuous liquid outflow and no gas cutoff,regime III at high liquid flow rate with degenerative pressure fluctuation in form of relatively stable bubbly or plug flow.The results indicate that severe slugging still occurs when the declination angle of pipeline is 0,and there are mainly two kinds of regimes:regime I and regime II.As the angle increases,the formation ranges of regime I and regime III increase slightly while that of regime II is not affected.With the increase of gas superficial velocity and liquid superficial velocity,the pressure fluctuation at the bottom of riser increases initially and then decreases.The maximum value of pressure fluctuation occurs at the transition boundary of regimes I and II.展开更多
In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Bas...In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Based on monitoring data, the effects of Iongwall mining on surface stream water were analyzed. The results demonstrate that Iongwall mining has effects on the surface stream water; and the stream water would be lost and decrease due to Iongwall mining but never go into underground through fractured zone. Also, the mechanism of water loss due to Iongwall mining was presented. The stream water can go into the surface cracks in the intersection of stream and surface cracks, longwall mining subsidence can change the surface stream slope and the downstream water flowing status. The results also show the effects of Iongwall mining on stream water are temporary and about one or two years later, surface stream water can be recovered.展开更多
A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contaminants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the i...A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contaminants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the influence of various factors on water flow and solute transport in and around the surface openings including recharge, properties of the waste material and presence of fractures in the surrounding rock mass. The effect of the regional hydraulic gradient was also investigated. The analyses were conducted by simulating various 2D cases using experimentally obtained material properties and controlled boundary conditions. The effects of the hydrogeological properties of the filling material(i.e., water retention curve and hydraulic conductivity function), fracture network characteristics and conductivity of the joints were assessed. The results illustrate that fractures control water flow and contaminants transport around the waste disposal area. A fracture network can desaturate the system and improve the regional gradient effect.展开更多
In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers...In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers gas flows across the gob and the working areas and may result in a condition where an oxygen deficient mixture or a methane accumulation in the gob flows into the face area. Computational Fluid Dynamics(CFDs) modeling was carried out to analyze this phenomenon and its impact on the development of an explosive mixture in a bleeder-ventilated panel scheme. Simulation results indicate that the outgassing and ingassing across the gob and the formation of Explosive Gas Zones(EGZs) are directly affected by atmospheric pressure changes. In the location where methane zones interface with mine air, EGZ fringes may form along the face and in the bleeder entries. These findings help assess the methane ignition and explosion risks associated with fluctuating atmospheric pressures.展开更多
Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including ...Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including the protection of working face layout and development direction), that is, gas flow observation analysis on the spot and gas content contrast method. The protection region was determined by gas flow observation analysis, gas content contrast, and computer numerical simulation combined with engineering practice. In the process of gas content test, the fixed sampling method "big hole drill reaming, small orifice drill rod connected with core tube" was employed. The results show that the determined protection region is in accordance with the actual site situation. The fixed sampling method ensures the accuracy of gas measurement of gas content.展开更多
Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ obse...Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ observation, the models of gas seepage, diffusion and air-leakage in the goaf were established in ascending mining. The ComputationFluid Dynamics software Fluent was used to simulate the air-leakage law of the goaf. Theresults of the numerical simulation provide a basis for the use of the technology of ventilation and fire prevention in the working face of an ascending mining, which ensures thesafety in production in the working face of the top-coal caving for 3_down coal seam in theJisan Coalmine.展开更多
Viscosity reduction is an important process in mining heavy oil.To predict the temperature variation and viscosity variation of heavy oil in flow direction,computational fluid dynamics(CFD) was adopted to simulate the...Viscosity reduction is an important process in mining heavy oil.To predict the temperature variation and viscosity variation of heavy oil in flow direction,computational fluid dynamics(CFD) was adopted to simulate the process of heat transfer and flow in this paper.Moreover,an objective function,namely viscosity reduction efficiency,was established to analyze the effect of viscosity reduction.The results indicate that circulating hot water can reduce viscosity significantly,and that the effect of viscosity reduction depends on the inlet temperature and inlet volumetric flow rate of hot water.There is a maximum temperature of heavy oil in flow direction.With the inlet volumetric flow rate of 2.0m3/h and the inlet temperatures of 60,℃,70,℃ and 80,℃,viscosity reduction efficiencies are 94.6%,96.7% and 97.3%,respectively.With the inlet temperature of 70,℃ and the volumetric flow rates of 1.5m3 /h,2.0 m3/h and 2.5m3/h,viscosity reduction efficiencies are 94.4%,96.7% and 97.2%,respectively.展开更多
基金Supported by the National High Technology Research and Development Program of China(2006AA09Z302)
文摘During the exploitation of offshore oil and gas,it is easy to form severe slugging which can cause great harm in the riser connecting wellheads and offshore platform preprocessing system.The flow pattern and pressure fluctuation of severe slugging were studied in an experimental simulation system with inner diameter of 0.051 m.It is found that severe slugging can be divided into three severe slugging regimes:regime I at low gas and liquid flow rates with large pressure fluctuation,intermittent flow of liquid and gas in the riser,and apparent cutoff of liquid phase,regime II at high gas flow rate with non-periodic fluctuation and discontinuous liquid outflow and no gas cutoff,regime III at high liquid flow rate with degenerative pressure fluctuation in form of relatively stable bubbly or plug flow.The results indicate that severe slugging still occurs when the declination angle of pipeline is 0,and there are mainly two kinds of regimes:regime I and regime II.As the angle increases,the formation ranges of regime I and regime III increase slightly while that of regime II is not affected.With the increase of gas superficial velocity and liquid superficial velocity,the pressure fluctuation at the bottom of riser increases initially and then decreases.The maximum value of pressure fluctuation occurs at the transition boundary of regimes I and II.
基金Supported by Pennsylvania Service Corporation at Waynesburg, Pennsylvania, USA the 0utstanding Youth Science Foundation of Henan Province (0612002100), China.
文摘In order to study the effect of Iongwall mining on surface stream water, monitoring stations of water flow rate was established. A lot of water flowing data were collected before, during and after Iongwall mining. Based on monitoring data, the effects of Iongwall mining on surface stream water were analyzed. The results demonstrate that Iongwall mining has effects on the surface stream water; and the stream water would be lost and decrease due to Iongwall mining but never go into underground through fractured zone. Also, the mechanism of water loss due to Iongwall mining was presented. The stream water can go into the surface cracks in the intersection of stream and surface cracks, longwall mining subsidence can change the surface stream slope and the downstream water flowing status. The results also show the effects of Iongwall mining on stream water are temporary and about one or two years later, surface stream water can be recovered.
基金financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC)the partners of Research Institute on Mines and the Environment (RIME UQAT-Polytechnique)
文摘A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contaminants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the influence of various factors on water flow and solute transport in and around the surface openings including recharge, properties of the waste material and presence of fractures in the surrounding rock mass. The effect of the regional hydraulic gradient was also investigated. The analyses were conducted by simulating various 2D cases using experimentally obtained material properties and controlled boundary conditions. The effects of the hydrogeological properties of the filling material(i.e., water retention curve and hydraulic conductivity function), fracture network characteristics and conductivity of the joints were assessed. The results illustrate that fractures control water flow and contaminants transport around the waste disposal area. A fracture network can desaturate the system and improve the regional gradient effect.
基金the financial support of the National Institute for Occupational Safety and Health–United States(No.211-2014-60050)
文摘In longwall mines, atmospheric pressure fluctuations can disturb the pressure balance between the gob and the ventilated working area, resulting in a phenomenon known as ‘‘gob breathing". Gob breathing triggers gas flows across the gob and the working areas and may result in a condition where an oxygen deficient mixture or a methane accumulation in the gob flows into the face area. Computational Fluid Dynamics(CFDs) modeling was carried out to analyze this phenomenon and its impact on the development of an explosive mixture in a bleeder-ventilated panel scheme. Simulation results indicate that the outgassing and ingassing across the gob and the formation of Explosive Gas Zones(EGZs) are directly affected by atmospheric pressure changes. In the location where methane zones interface with mine air, EGZ fringes may form along the face and in the bleeder entries. These findings help assess the methane ignition and explosion risks associated with fluctuating atmospheric pressures.
文摘Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including the protection of working face layout and development direction), that is, gas flow observation analysis on the spot and gas content contrast method. The protection region was determined by gas flow observation analysis, gas content contrast, and computer numerical simulation combined with engineering practice. In the process of gas content test, the fixed sampling method "big hole drill reaming, small orifice drill rod connected with core tube" was employed. The results show that the determined protection region is in accordance with the actual site situation. The fixed sampling method ensures the accuracy of gas measurement of gas content.
基金Supported by the National Natural Science Foundation of China(50704025)the National Science Fundation of Education Department in Shaanxi Province(07JK318)the Planning Project of Excellent Talented Person of New Century Supported by Ministry of Education of China (NECT050874)
文摘Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ observation, the models of gas seepage, diffusion and air-leakage in the goaf were established in ascending mining. The ComputationFluid Dynamics software Fluent was used to simulate the air-leakage law of the goaf. Theresults of the numerical simulation provide a basis for the use of the technology of ventilation and fire prevention in the working face of an ascending mining, which ensures thesafety in production in the working face of the top-coal caving for 3_down coal seam in theJisan Coalmine.
文摘Viscosity reduction is an important process in mining heavy oil.To predict the temperature variation and viscosity variation of heavy oil in flow direction,computational fluid dynamics(CFD) was adopted to simulate the process of heat transfer and flow in this paper.Moreover,an objective function,namely viscosity reduction efficiency,was established to analyze the effect of viscosity reduction.The results indicate that circulating hot water can reduce viscosity significantly,and that the effect of viscosity reduction depends on the inlet temperature and inlet volumetric flow rate of hot water.There is a maximum temperature of heavy oil in flow direction.With the inlet volumetric flow rate of 2.0m3/h and the inlet temperatures of 60,℃,70,℃ and 80,℃,viscosity reduction efficiencies are 94.6%,96.7% and 97.3%,respectively.With the inlet temperature of 70,℃ and the volumetric flow rates of 1.5m3 /h,2.0 m3/h and 2.5m3/h,viscosity reduction efficiencies are 94.4%,96.7% and 97.2%,respectively.