The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati...The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.展开更多
Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the s...Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively.展开更多
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The mul...Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The multi-phase SPH (MSPH) method was applied to improving the stabil-ity, which smoothes the particle density and makes pressure continuous at interfaces. Numericalexamples of jet forming process were used to test capability of the MSPH method. The results show that the method remains algorithm stability for large density gradient between the jets and gaseous products and has potential application to both the explosion and the jet problems. The effect of initiation ways of the shaped charge was discussed as well.展开更多
The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of...The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.展开更多
A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevo...A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.展开更多
Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. ...Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. From the spectral analysis of the results, we can see that the periods of displacements are 12 months and the semi-periods are 6 months. The results also show that the maximum seasonal displacements can reach 20 mm and even larger. The covariance analyses and significance tests show that the coefficients of 96 percent of the stations are significant at the 0.1 significance level. The results show that one of the reasons of the vertical crustal displacements is the changing surface fluid loads.展开更多
Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subj...Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.展开更多
The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechan...The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechanics and gas dynamics, the model of coupled gas flow' and deformation process of heterogeneous coal was presented and the effects of heterogeneity of coal on gas flow and failure of coal wcrc investigated. Major findings include: The effect of the heterogeneity of coal on gas flow and mechanical thilure of coal can be considered by the model in this paper. Failure of coal has a great effect on gas flow.展开更多
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode...The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.展开更多
This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and r...This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and ranging(LiDAR) digital elevation models(DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system(GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.展开更多
The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwi...The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.展开更多
To predict the flow evolution of fish swimming problems,a flow solver based on the immersed boundary lattice Boltzmann method is developed.A flexible iterative algorithm based on the framework of implicit boundary for...To predict the flow evolution of fish swimming problems,a flow solver based on the immersed boundary lattice Boltzmann method is developed.A flexible iterative algorithm based on the framework of implicit boundary force correction is used to save the computational cost and memory,and the momentum forcing is described by a simple direct force formula without complicated integral calculation when the velocity correction at the boundary node is determined.With the presented flow solver,the hydrodynamic interaction between the fish-induced dynamic stall vortices and the incoming vortices in unsteady flow is analyzed.Numerical simulation results unveil the mechanism of fish exploiting vortices to enhance their own hydrodynamic performances.The superior swimming performances originate from the relative movement between the“merged vortex”and the locomotion of the fishtail,which is controlled by the phase difference.Formation conditions of the“merged vortex”become the key factor for fish to exploit vortices to improve their swimming performance.We further discuss the effect of the principal components of locomotion.From the results,we conclude that lateral translation plays a crucial role in propulsion while body undulation in tandem with rotation and head motion reduce the locomotor cost.展开更多
There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms h...There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.展开更多
Direct numerical simulations are carried out to assess the potential drag reduction of compressible turbulent flow between isothermal walls.For the sake of achieving drag reduction,the flow is actively controlled by d...Direct numerical simulations are carried out to assess the potential drag reduction of compressible turbulent flow between isothermal walls.For the sake of achieving drag reduction,the flow is actively controlled by deformable dimples lying on the bottom wall of the channel.The first stage of the procedure consists in assessing the optimum geometry of the dimples.In this regard,the lower wall is allowed to freely deform itself according to the loop of control.This method is called the smart wall approach in this paper.By an analysis of the typical shape of the wall deformation thus obtained,it is found that dimples should be thinner than or comparable to the width of streaky structures in the spanwise direction and elongated in the streamwise direction.With active dimples as the wall-deformation actuators,a 15% drag reduction is obtained for the flow at Mam = 0.35 while the drag reduction rate is about 12% for the flow at Mam = 1.5.The fundamental mechanism of the drag reduction is then discussed in this paper.The drag reduction is believed to result from two aspects:the reduction of the mean streamwise velocity gradient near the deformable wall and the suppression of the turbulent fluctuations.展开更多
In this paper,a two-level search method for searching transfer opportunities between interplanetary halo orbits,exploiting the invariant manifolds of the restricted three-body problem,is proposed.In the method,the fir...In this paper,a two-level search method for searching transfer opportunities between interplanetary halo orbits,exploiting the invariant manifolds of the restricted three-body problem,is proposed.In the method,the first-level search procedure is performed under the conditions of the initial time of escape manifold trajectory of the Sun-Earth halo orbit and the terminal time of capture manifold of the target planet fixed,by solving the optimal two-impulsive heliocentric trajectory to connect the two manifold trajectories.The contour map,helpful to the understanding of the global characteristics of the transfer opportunities,taking the initial time of escape manifold and the terminal time of capture manifold as variables,the optimal velocity increment of the first-level search as objective function,is used for the second-level search.Finally,taking the Earth-Mars and Earth-Venus halo to halo transfers for example,the transfer opportunities in 2015-2017 are searched.The results show the effectiveness of the proposed method and reveal the property of quasi-period of transfer opportunities between interplanetary halo orbits.展开更多
文摘The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation.
基金Project(51005150)supported by the National Natural Science Foundation of ChinaProject(2011CB012903)supported by the National Basic Research Program of China
文摘Hot deformation behavior ofX20Cr13 martensitic stainless steel was investigated by conducting hot compression tests on Gleeble-1500D thermo-mechanical simulator at the temperature ranging from 1173 to 1423 K and the strain rate ranging from 0.001 to 10 s^-1. The material constants of a and n, activation energy Q and A were calculated as a function of strain by a fifth-order polynomial fit. Constitutive models incorporating deformation temperature, strain rate and strain were developed to model the hot deformation behavior of X20Cr13 martensitic stainless steel based on the Arrhenius equation. The predictable efficiency of the developed constitutive models of X20Cr13 martensitic stainless steel was analyzed by correlation coefficient and average absolute relative error which are 0.996 and 3.22%, respectively.
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
基金Supported by New Century Exellent Talents in University(NCET) in China for National "973"Program in China (No.61338)Innvoative Research Project of Xi’an Hi-Tech Institute(No.EPXY0806)
文摘Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The multi-phase SPH (MSPH) method was applied to improving the stabil-ity, which smoothes the particle density and makes pressure continuous at interfaces. Numericalexamples of jet forming process were used to test capability of the MSPH method. The results show that the method remains algorithm stability for large density gradient between the jets and gaseous products and has potential application to both the explosion and the jet problems. The effect of initiation ways of the shaped charge was discussed as well.
文摘The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.
基金Supported by Marie Curie International Incoming Fellowship (No. PIIF-GA-2009-253453)
文摘A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.
文摘Using the model data for surface mass changes of the atmosphere, ocean, soil moisture and snow depth, the vertical crustal displacements of 25 ficual stations in China were calculated according to the loading theory. From the spectral analysis of the results, we can see that the periods of displacements are 12 months and the semi-periods are 6 months. The results also show that the maximum seasonal displacements can reach 20 mm and even larger. The covariance analyses and significance tests show that the coefficients of 96 percent of the stations are significant at the 0.1 significance level. The results show that one of the reasons of the vertical crustal displacements is the changing surface fluid loads.
基金Project(09JJ1008) supported by Hunan Provincial Science Foundation of ChinaProject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘Considering the influence of strain softening, the solutions of stress, displacement, plastic softening region radius and plastic residual region radius were derived for circular openings in nonlinear rock masses subjected to seepage. The radial stress distribution curve, ground reaction curve, and relation curve between plastic softening region radius and supporting force in three different conditions were drawn respectively. From the comparisons among these results for different conditions, it is found that when the supporting force is the same, the displacement of tunnel wall considering both seepage and strain softening is 85.71% greater than that only considering seepage. The increase values of radial displacement at 0.95 m and plastic softening region radius at 6.6 m show that the seepage and strain softening have the most unfavorable effects on circular opening stability in strain softening rock masses.
基金Supported by the Key National Natural Science Foundation of China (50434020) the Natural Science Foundation of Hebei Province, China (E2010000872, Z2009315)
文摘The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechanics and gas dynamics, the model of coupled gas flow' and deformation process of heterogeneous coal was presented and the effects of heterogeneity of coal on gas flow and failure of coal wcrc investigated. Major findings include: The effect of the heterogeneity of coal on gas flow and mechanical thilure of coal can be considered by the model in this paper. Failure of coal has a great effect on gas flow.
基金provided by the Project of National Scientific and Technical Supporting Programs Funded of China(No.2012BAB13B03)
文摘The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.
基金supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Grant No. 2012M3A2A1050979)
文摘This paper describes a geographic information system(GIS)-based method for observing changes in topography caused by the initiation, transport, and deposition of debris flows using highresolution light detection and ranging(LiDAR) digital elevation models(DEMs) obtained before and after the debris flow events. The paper also describes a method for estimating the volume of debris flows using the differences between the LiDAR DEMs. The relative and absolute positioning accuracies of the LiDAR DEMs were evaluated using a real-time precise global navigation satellite system(GNSS) positioning method. In addition, longitudinal and cross-sectional profiles of the study area were constructed to determine the topographic changes caused by the debris flows. The volume of the debris flows was estimated based on the difference between the LiDAR DEMs. The accuracies of the relative and absolute positioning of the two LiDAR DEMs were determined to be ±10 cm and ±11 cm RMSE, respectively, which demonstrates the efficiency of the method for determining topographic changes at an scale equivalent to that of field investigations. Based on the topographic changes, the volume of the debris flows in the study area was estimated to be 3747 m3, which is comparable with the volume estimated based on the data from field investigations.
基金supported by the National Natural Science Foundation of China(Nos.11922205,12072201)the Fundamental Research Fund for the Central Universities(No.N2005019)。
文摘The vibration and instability of functionally graded material(FGM)sandwich cylindrical shells conveying fluid are investigated.The Navier-Stokes relation is used to describe the fluid pressure acting on the FGM sandwich shells.Based on the third-order shear deformation shell theory,the governing equations of the system are derived by using the Hamilton’s principle.To check the validity of the present analysis,the results are compared with those in previous studies for the special cases.Results manifest that the natural frequency of the fluid-conveying FGM sandwich shells increases with the rise of the core-to-thickness ratio and power-law exponent,while decreases with the rise of fluid density,radius-to-thickness ratio and length-to-radius ratio.The fluid-conveying FGM sandwich shells lose stability when the non-dimensional flow velocity falls in 2.1-2.5,which should be avoided in engineering application.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘To predict the flow evolution of fish swimming problems,a flow solver based on the immersed boundary lattice Boltzmann method is developed.A flexible iterative algorithm based on the framework of implicit boundary force correction is used to save the computational cost and memory,and the momentum forcing is described by a simple direct force formula without complicated integral calculation when the velocity correction at the boundary node is determined.With the presented flow solver,the hydrodynamic interaction between the fish-induced dynamic stall vortices and the incoming vortices in unsteady flow is analyzed.Numerical simulation results unveil the mechanism of fish exploiting vortices to enhance their own hydrodynamic performances.The superior swimming performances originate from the relative movement between the“merged vortex”and the locomotion of the fishtail,which is controlled by the phase difference.Formation conditions of the“merged vortex”become the key factor for fish to exploit vortices to improve their swimming performance.We further discuss the effect of the principal components of locomotion.From the results,we conclude that lateral translation plays a crucial role in propulsion while body undulation in tandem with rotation and head motion reduce the locomotor cost.
文摘There were for a long time two invariant forms of hydrodynamic equations: one was related to coordinate system of references, and the other was versus to measure units of characteristics. These both invariant forms had important roles in the development of theoretical and practical applications of hydro-aerodynamics and related industries. The third invariant form of hydrodynamic equations is one for the dimensions of spaces. For this goal, the hyper quantities (space and physics) are introduced. Then these are created we can easily cover all problems in arbitrary dimensions (3D, 2D, 1D, separate space for liquids or constituent matters). In particularly, when they are applied to water hammer problem, which is an especially problem, we can receive immediately celerity and pressure of the event.
基金supported by the National Natural Science Foundation of China (Grant Nos.10932005 and 50910222)
文摘Direct numerical simulations are carried out to assess the potential drag reduction of compressible turbulent flow between isothermal walls.For the sake of achieving drag reduction,the flow is actively controlled by deformable dimples lying on the bottom wall of the channel.The first stage of the procedure consists in assessing the optimum geometry of the dimples.In this regard,the lower wall is allowed to freely deform itself according to the loop of control.This method is called the smart wall approach in this paper.By an analysis of the typical shape of the wall deformation thus obtained,it is found that dimples should be thinner than or comparable to the width of streaky structures in the spanwise direction and elongated in the streamwise direction.With active dimples as the wall-deformation actuators,a 15% drag reduction is obtained for the flow at Mam = 0.35 while the drag reduction rate is about 12% for the flow at Mam = 1.5.The fundamental mechanism of the drag reduction is then discussed in this paper.The drag reduction is believed to result from two aspects:the reduction of the mean streamwise velocity gradient near the deformable wall and the suppression of the turbulent fluctuations.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2012CB720000)the National Natural Science Foundation of China (Grant Nos. 10832004 and 11102020)
文摘In this paper,a two-level search method for searching transfer opportunities between interplanetary halo orbits,exploiting the invariant manifolds of the restricted three-body problem,is proposed.In the method,the first-level search procedure is performed under the conditions of the initial time of escape manifold trajectory of the Sun-Earth halo orbit and the terminal time of capture manifold of the target planet fixed,by solving the optimal two-impulsive heliocentric trajectory to connect the two manifold trajectories.The contour map,helpful to the understanding of the global characteristics of the transfer opportunities,taking the initial time of escape manifold and the terminal time of capture manifold as variables,the optimal velocity increment of the first-level search as objective function,is used for the second-level search.Finally,taking the Earth-Mars and Earth-Venus halo to halo transfers for example,the transfer opportunities in 2015-2017 are searched.The results show the effectiveness of the proposed method and reveal the property of quasi-period of transfer opportunities between interplanetary halo orbits.