Based on the immersed boundary method, a numerical simulation for an oscillating airfoil is established and a preliminary analysis of the oscillating airfoil is presented with an emphasis on the physical understanding...Based on the immersed boundary method, a numerical simulation for an oscillating airfoil is established and a preliminary analysis of the oscillating airfoil is presented with an emphasis on the physical understanding of fluid-structure interaction. In order to validate the method, two simulation cases: oscillating circular cylinder at low K-C number and two degrees of freedom oscillating cylinder are carded out first and the results are in good agreement with the previous re:searches. In the oscillating airfoil simulation, it is found that the reduced velocity U^*. is a very sensitive factor and especially U^*-2.8 is the critical stable boundary in the present work. The method shows the predominance of time saving in computational process for such a complicated fluid-structure interac- tion problem.展开更多
基金supported by NSFC under grants 50736007 and 50136010
文摘Based on the immersed boundary method, a numerical simulation for an oscillating airfoil is established and a preliminary analysis of the oscillating airfoil is presented with an emphasis on the physical understanding of fluid-structure interaction. In order to validate the method, two simulation cases: oscillating circular cylinder at low K-C number and two degrees of freedom oscillating cylinder are carded out first and the results are in good agreement with the previous re:searches. In the oscillating airfoil simulation, it is found that the reduced velocity U^*. is a very sensitive factor and especially U^*-2.8 is the critical stable boundary in the present work. The method shows the predominance of time saving in computational process for such a complicated fluid-structure interac- tion problem.