Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady...Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.展开更多
In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of ...In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.展开更多
The unique Coanda surface has a great influence on the performance of bladeless fan.However,there is few studies to explain the relationship between the performance and Coanda surface curvature at present.In order to ...The unique Coanda surface has a great influence on the performance of bladeless fan.However,there is few studies to explain the relationship between the performance and Coanda surface curvature at present.In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan,numerical studies are performed in this paper.Firstly,three-dimensional numerical simulation is done by Fluent software.For the purpose to obtain detailed information of the flow field around the Coanda surface,two-dimensional numerical simulation is also conducted.Five types of Coanda surfaces with different curvature are designed,and the flow behaviour and the performance of them are analyzed and compared with those of the prototype.The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance,It is found that there is an optimal curvature of Coanda surfaces among the studied models.Simulation result shows that there is a special low pressure region.With increasing curvature in Y direction,several low pressure regions gradually enlarged,then begin to merge slowly,and finally form a large area of low pressure.From the analyses of streamlines and velocity angle,it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall.Thus,it leads to that the curvature of the streamlines is consistent with that of Coanda surface.Meanwhile,it also causes the fluid movement towards the most suitable direction.This study will provide useful information to performance improvements of bladeless fans.展开更多
文摘Computational Fluid Dynamics (CFD) simulations of cavitating flow through water hydraulic poppet valves were performed using advanced RNG k-epsilon turbulence model. The flow was turbulent, incompressible and unsteady, for Reynolds numbers greater than 43 000. The working fluid was water, and the structure of the valve was simplified as a two dimensional axisymmetric geometrical model. Flow field visualization was numerically achieved. The effects of inlet velocity, outlet pressure, opening size as well as poppet angle on cavitation intensity in the poppet valve were numerically investigated. Experimental flow visualization was conducted to capture cavitation images near the orifice in the poppet valve with 30° poppet angle using high speed video camera. The binary cavitating flow field distribution obtained from digital processing of the original cavitation image showed a good agreement with the numerical result.
基金financially supported by the National Natural Science Foundation of China (No.51304213)the Open Funds of State Key Laboratory Cultivation Base for Gas Geology and Gas Control-Henan Polytechnic University of China (No.WS2013A03)the Fundamental Research Funds for Central Universities of China (No.2013QZ01)
文摘In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.
基金supported by National Natural Science Foundation of China(No.51276172)National Science and TechnologySupport Project(No.2013BAF05B01)
文摘The unique Coanda surface has a great influence on the performance of bladeless fan.However,there is few studies to explain the relationship between the performance and Coanda surface curvature at present.In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan,numerical studies are performed in this paper.Firstly,three-dimensional numerical simulation is done by Fluent software.For the purpose to obtain detailed information of the flow field around the Coanda surface,two-dimensional numerical simulation is also conducted.Five types of Coanda surfaces with different curvature are designed,and the flow behaviour and the performance of them are analyzed and compared with those of the prototype.The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance,It is found that there is an optimal curvature of Coanda surfaces among the studied models.Simulation result shows that there is a special low pressure region.With increasing curvature in Y direction,several low pressure regions gradually enlarged,then begin to merge slowly,and finally form a large area of low pressure.From the analyses of streamlines and velocity angle,it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall.Thus,it leads to that the curvature of the streamlines is consistent with that of Coanda surface.Meanwhile,it also causes the fluid movement towards the most suitable direction.This study will provide useful information to performance improvements of bladeless fans.