A new physical current-voltage model for polysilicon thin-film transistors (poly-Si TFTs) is presented. Taking the V-shaped exponential distribution of trap states density into consideration,explicit calculation of ...A new physical current-voltage model for polysilicon thin-film transistors (poly-Si TFTs) is presented. Taking the V-shaped exponential distribution of trap states density into consideration,explicit calculation of surface potential is derived using the Lambert W function, which greatly improves computational efficiency and is critical in circuit simulation. Based on the exponential density of trap states and the calculated surface potential, the drain current characteristics of the subthreshold and the strong inversion region are predicted. A complete and unique drain current expression, including kink effect, is deduced. The model and the experimental data agree well over a wide range of channel lengths and operational regions.展开更多
Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is origin...Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is originated.Heat source is present.Xue relation of nanoliquid is employed to explore the feature of CNTs (single and multi-wall).Transformation technique is adopted in order to achieve non-linear ordinary differential systems.The governing systems are solved numerically.Effects of involved parameters on flow,temperature,concentration,heat transfer rate (Nusselt number) with addition of skin friction coefficient are illustrated graphically.Decay in velocity is noted with an increment in Forchheimer number and porosity parameter while opposite impact is seen for temperature.Moreover,role of MWCNTs is prominent when compared with SWCNTs.展开更多
The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy ...The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios.展开更多
The entropy of a hypersurface is given by the supremum over all F-functionals with varying centers and scales, and is invariant under rigid motions and dilations. As a consequence of Huisken's monotonicity formula...The entropy of a hypersurface is given by the supremum over all F-functionals with varying centers and scales, and is invariant under rigid motions and dilations. As a consequence of Huisken's monotonicity formula, entropy is non-increasing under mean curvature flow. We show here that a compact mean convex hypersurface with some low entropy is diffeomorphic to a round sphere. We also prove that a smooth selfshrinker with low entropy is a hyperplane.展开更多
文摘A new physical current-voltage model for polysilicon thin-film transistors (poly-Si TFTs) is presented. Taking the V-shaped exponential distribution of trap states density into consideration,explicit calculation of surface potential is derived using the Lambert W function, which greatly improves computational efficiency and is critical in circuit simulation. Based on the exponential density of trap states and the calculated surface potential, the drain current characteristics of the subthreshold and the strong inversion region are predicted. A complete and unique drain current expression, including kink effect, is deduced. The model and the experimental data agree well over a wide range of channel lengths and operational regions.
文摘Present work reports chemically reacting Darcy-Forchheimer flow of nanotubes.Water is utilized as base liquid while carbon nanotubes are considered nanomaterial.An exponential stretchable curved surface flow is originated.Heat source is present.Xue relation of nanoliquid is employed to explore the feature of CNTs (single and multi-wall).Transformation technique is adopted in order to achieve non-linear ordinary differential systems.The governing systems are solved numerically.Effects of involved parameters on flow,temperature,concentration,heat transfer rate (Nusselt number) with addition of skin friction coefficient are illustrated graphically.Decay in velocity is noted with an increment in Forchheimer number and porosity parameter while opposite impact is seen for temperature.Moreover,role of MWCNTs is prominent when compared with SWCNTs.
文摘The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios.
文摘The entropy of a hypersurface is given by the supremum over all F-functionals with varying centers and scales, and is invariant under rigid motions and dilations. As a consequence of Huisken's monotonicity formula, entropy is non-increasing under mean curvature flow. We show here that a compact mean convex hypersurface with some low entropy is diffeomorphic to a round sphere. We also prove that a smooth selfshrinker with low entropy is a hyperplane.