Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the aut...Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.展开更多
Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines...Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.展开更多
Volumetric particle image velocimetry(VPIV) refers to a PIV-based technique which can obtain full velocity components in a three-dimensional measurement volume.A new VPIV method with a single lens was developed.A thre...Volumetric particle image velocimetry(VPIV) refers to a PIV-based technique which can obtain full velocity components in a three-dimensional measurement volume.A new VPIV method with a single lens was developed.A three-vision prism was used to make viewing from different angles using one camera.The technique was tested and successfully applied to a three-dimensional three-component(3D3C) measurement of a zero-net-mass-flux jet flow.The accuracy of the measurement was investigated,specifically in steps of calibration,self-calibration and particle triangulation.Time sequence of a vortex ring development was presented.It was shown that the measurement has high accuracy with validation rate of velocity vector reaching about 95%.The flow with vortex ring passing the measurement volume was studied using both swirl strength and vorticity magnitude criteria.Through comparison,the swirl criterion was found to be superior to the criterion of vorticity in differentiating the rotation motion and the free shear.展开更多
In this paper,the internal flow field in a centrifugal pump working at the design flow rate operating condition has been measured using the particle image velocimetry(PIV)technique with the fluorescent particles and t...In this paper,the internal flow field in a centrifugal pump working at the design flow rate operating condition has been measured using the particle image velocimetry(PIV)technique with the fluorescent particles and the index-matched fluid technology.The index-marching fluid with the same refractive index as the transparent material has been prepared and applied in the present test of pump with geometrical complex walls.The comparison between velocity distributions of PIV results both with and without fluorescent particles,as well as with and without index-marching fluid are conducted to find the differences.The DES(Detached Eddy Simulation)has been employed to calculate the three-dimensional unsteady turbulent flow in the pump to examine and to certify the PIV measurement results.The DES results of instantaneous flow velocity fields agree with PIV test results with fluorescent particles and index-marching fluid.It is necessary to perform the PIV measurement of pumps with fluorescent seeds and index-marching fluid in order to get exact results.The experimental results show the distributions of velocity,steamlines,and the principal Reynolds normal stress(PRNS)and the principal Reynolds shear stress(PRSS).展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 41176074, 51379043 and 51409063)Acknowledgement This project was supported by the National Natural Science Foundation of China (Grant Nos. 41176074,51379043 and 51409063) and was conducted in response to the great support received from a basic research project entitled "Multihull Ship Technology Key Laboratory of Fundamental Science for National Defence", which was conducted at Harbin Engineering University. The authors would like to extend their sincere gratitude to their colleagues in the towing tank laboratory.
文摘Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.
基金Supported by the National Natural Science Foundation of China(20776008 20821004 20990224) the National Basic Research Program of China(2007CB714300)
文摘Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11102013,10832001)the "Weishi" Foundation of Beijing University of Aeronautics and Astronautics (Grant No. YWF-12-RHRS-008)
文摘Volumetric particle image velocimetry(VPIV) refers to a PIV-based technique which can obtain full velocity components in a three-dimensional measurement volume.A new VPIV method with a single lens was developed.A three-vision prism was used to make viewing from different angles using one camera.The technique was tested and successfully applied to a three-dimensional three-component(3D3C) measurement of a zero-net-mass-flux jet flow.The accuracy of the measurement was investigated,specifically in steps of calibration,self-calibration and particle triangulation.Time sequence of a vortex ring development was presented.It was shown that the measurement has high accuracy with validation rate of velocity vector reaching about 95%.The flow with vortex ring passing the measurement volume was studied using both swirl strength and vorticity magnitude criteria.Through comparison,the swirl criterion was found to be superior to the criterion of vorticity in differentiating the rotation motion and the free shear.
基金supported by the National Natural Science Foundation of China(Grant No.10532010)
文摘In this paper,the internal flow field in a centrifugal pump working at the design flow rate operating condition has been measured using the particle image velocimetry(PIV)technique with the fluorescent particles and the index-matched fluid technology.The index-marching fluid with the same refractive index as the transparent material has been prepared and applied in the present test of pump with geometrical complex walls.The comparison between velocity distributions of PIV results both with and without fluorescent particles,as well as with and without index-marching fluid are conducted to find the differences.The DES(Detached Eddy Simulation)has been employed to calculate the three-dimensional unsteady turbulent flow in the pump to examine and to certify the PIV measurement results.The DES results of instantaneous flow velocity fields agree with PIV test results with fluorescent particles and index-marching fluid.It is necessary to perform the PIV measurement of pumps with fluorescent seeds and index-marching fluid in order to get exact results.The experimental results show the distributions of velocity,steamlines,and the principal Reynolds normal stress(PRNS)and the principal Reynolds shear stress(PRSS).