In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion(LTEC) is refocused as one of the renewable energy...In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion(LTEC) is refocused as one of the renewable energy methods. The usefulness of LTEC is expected using hot springs and waste heat. In the case of the Rankine cycle using ammonia as the working fluid, the thermal properties of the working fluid changes in the evaporator. The traditional evaluation method of heat exchanger performance is the LMTD(Logarithmic Mean Temperature Difference) method. On the other hand, the GMTD(Generalized Mean Temperature Difference) method allows the variation of thermal properties in the heat exchanger. The aim of this study is to compare the two methods for the calculation of temperature differences and the corresponding influence on the total performance of the Rankine cycle that is operated using ammonia as a working fluid. As a result, the thermal efficiency of the Rankine cycle is greater than that of the LMTD method. Moreover, the computable range of the GMTD calculation method is less than that of the LMTD calculation method.展开更多
This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness i...This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a third-order fluid. The problem is first reduced to solving a system of coupled nonlinear differential equations involving several parameters. Considering blood as an electrically conducting fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropri- ate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. Com- putational results for the variation in velocity, temperature, concentration, skin-friction coefi^icient, Nusselt number and Sherwood number are presented in graphical/tabular form. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding blood flow and heat transfer in capillaries.展开更多
文摘In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion(LTEC) is refocused as one of the renewable energy methods. The usefulness of LTEC is expected using hot springs and waste heat. In the case of the Rankine cycle using ammonia as the working fluid, the thermal properties of the working fluid changes in the evaporator. The traditional evaluation method of heat exchanger performance is the LMTD(Logarithmic Mean Temperature Difference) method. On the other hand, the GMTD(Generalized Mean Temperature Difference) method allows the variation of thermal properties in the heat exchanger. The aim of this study is to compare the two methods for the calculation of temperature differences and the corresponding influence on the total performance of the Rankine cycle that is operated using ammonia as a working fluid. As a result, the thermal efficiency of the Rankine cycle is greater than that of the LMTD method. Moreover, the computable range of the GMTD calculation method is less than that of the LMTD calculation method.
文摘This paper deals with the theoretical investigation of a fundamental problem of magne- tohydrodynamic (MHD) flow of blood in a capillary in the presence of thermal radiation and chemical reaction. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a third-order fluid. The problem is first reduced to solving a system of coupled nonlinear differential equations involving several parameters. Considering blood as an electrically conducting fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropri- ate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. Com- putational results for the variation in velocity, temperature, concentration, skin-friction coefi^icient, Nusselt number and Sherwood number are presented in graphical/tabular form. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding blood flow and heat transfer in capillaries.