Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardnes...Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone.展开更多
A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with t...A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.展开更多
Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution insi...Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution inside the cans during thermal processing. A Computational Fluid Dynamics (CFD) model was developed for thermization of milk in the can heating at 65℃ for the first time to determine the temperature distribution in the canned milk at stationary position. This developed CFD model was validated with the experimental measurements of temperature. The effects of thermization temperature on milk flow profile (velocity), milk temperature and viscosity profiles inside the can during thermal process were investigated. Temperature profiles of milk in can at three different planes (i.e. top, middle and bottom plane) were studied. Moreover, thermization unit was calculated by correlating with temperature and it was found that maximum thermization unit was achieved at 540 s of thermal processing of milk in can.展开更多
The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable t...The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.展开更多
A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model...A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.展开更多
Heat transport phenomenon of two-dimensional magnetohydrodynamie Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated...Heat transport phenomenon of two-dimensional magnetohydrodynamie Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Fhrther, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier's theory of heat flux.展开更多
An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics(CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The dist...An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics(CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor(as: Overall Temperature Distribution Factor-OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.展开更多
The Phenomena of the interaction between a supersonic jet and an obstacle is a very interesting and important problem relating to the industrial engineering. This paper aims to investigate the characteristics of the t...The Phenomena of the interaction between a supersonic jet and an obstacle is a very interesting and important problem relating to the industrial engineering. This paper aims to investigate the characteristics of the two-dimensional temperature distribution on an inclined plate surface and the relation between the temperature distribution and some shock waves formed in the flow field. In this study, the measurement of temperature distribution on an inclined plate surface and the now visualization has carried out for various conditions using the thermo-sensitive liquid crystal sheet and the schlieren method. The two dimensional temperature distribution on the plate surface is clearly obtained by the thermo-sensitive liquid crystal sheet. The relation between the temperature distribution on an inclined plate surface and some shock waves reached at a plate surface is discussed. In this paper, the characteristics of the temperature distribution and the maximum temperature, and some other experimental evidences are presented.展开更多
This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, wh...This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4 th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.展开更多
文摘Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone.
文摘A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.
文摘Thermal processing of milk is an important unit operation to inactivate the spoilage organism and enzymes and thus increase the storage life of milk, It was very difficult to find out the temperature distribution inside the cans during thermal processing. A Computational Fluid Dynamics (CFD) model was developed for thermization of milk in the can heating at 65℃ for the first time to determine the temperature distribution in the canned milk at stationary position. This developed CFD model was validated with the experimental measurements of temperature. The effects of thermization temperature on milk flow profile (velocity), milk temperature and viscosity profiles inside the can during thermal process were investigated. Temperature profiles of milk in can at three different planes (i.e. top, middle and bottom plane) were studied. Moreover, thermization unit was calculated by correlating with temperature and it was found that maximum thermization unit was achieved at 540 s of thermal processing of milk in can.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University, Jeddah, Saudi Arabia
文摘The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.
文摘A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.
文摘Heat transport phenomenon of two-dimensional magnetohydrodynamie Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Fhrther, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier's theory of heat flux.
基金supported by National Natural Science Foundation of China with project No.51406202
文摘An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics(CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor(as: Overall Temperature Distribution Factor-OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.
文摘The Phenomena of the interaction between a supersonic jet and an obstacle is a very interesting and important problem relating to the industrial engineering. This paper aims to investigate the characteristics of the two-dimensional temperature distribution on an inclined plate surface and the relation between the temperature distribution and some shock waves formed in the flow field. In this study, the measurement of temperature distribution on an inclined plate surface and the now visualization has carried out for various conditions using the thermo-sensitive liquid crystal sheet and the schlieren method. The two dimensional temperature distribution on the plate surface is clearly obtained by the thermo-sensitive liquid crystal sheet. The relation between the temperature distribution on an inclined plate surface and some shock waves reached at a plate surface is discussed. In this paper, the characteristics of the temperature distribution and the maximum temperature, and some other experimental evidences are presented.
文摘This communication addresses the impact of heat source/sink along with mixed convection on oblique flow of Casson fluid having variable viscosity. Similarity analysis has been utilized to model governing equations, which are simplified to set of nonlinear differential equations. Computational procedure of shooting algorithm along with 4 th order Range-Kutta-Fehlberg scheme is opted to attain the velocity and temperature distributions. Impact of imperative parameters on Casson fluid flow, temperature, significant physical quantities such as skin friction, local heat flux and streamlines are displayed via graphs.