A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contaminants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the i...A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contaminants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the influence of various factors on water flow and solute transport in and around the surface openings including recharge, properties of the waste material and presence of fractures in the surrounding rock mass. The effect of the regional hydraulic gradient was also investigated. The analyses were conducted by simulating various 2D cases using experimentally obtained material properties and controlled boundary conditions. The effects of the hydrogeological properties of the filling material(i.e., water retention curve and hydraulic conductivity function), fracture network characteristics and conductivity of the joints were assessed. The results illustrate that fractures control water flow and contaminants transport around the waste disposal area. A fracture network can desaturate the system and improve the regional gradient effect.展开更多
A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based...A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control.展开更多
One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the...One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.展开更多
Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex m...Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex microchannel network inside three-dimensional (3D) scaffolds for efficient mass transportation. Here we presented a biomimetic strategy to generate a mi- crochannel network within porous biomaterial scaffolds by mimicking the vascular tree of rat liver. The typical parameters of the blood vessels were incorporated into the biomimetic design of the microchannel network such as branching angle and diameter. Silk fibroin-gelatin scaffolds with biomimetic vascular tree were fabricated by combining micromolding, freeze drying and 3D rolling techniques. The relationship between the micro-channeled design and flow pattern was revealed by a flow experiment, which indicated that the scaffolds with biomimetic vascular tree exhibited unique capability in improving mass transportation inside the 3D scaffold. The 3D scaffolds, preseeded with primary hepatocytes, were dynamically cultured in a bioreactor system. The results confirmed that the pre-designed biomimetic microchannel network facilitated the generation and expansion of hepatocytes.展开更多
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
基金financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC)the partners of Research Institute on Mines and the Environment (RIME UQAT-Polytechnique)
文摘A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contaminants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the influence of various factors on water flow and solute transport in and around the surface openings including recharge, properties of the waste material and presence of fractures in the surrounding rock mass. The effect of the regional hydraulic gradient was also investigated. The analyses were conducted by simulating various 2D cases using experimentally obtained material properties and controlled boundary conditions. The effects of the hydrogeological properties of the filling material(i.e., water retention curve and hydraulic conductivity function), fracture network characteristics and conductivity of the joints were assessed. The results illustrate that fractures control water flow and contaminants transport around the waste disposal area. A fracture network can desaturate the system and improve the regional gradient effect.
基金Project (No. 2006AA05Z148) supported by the Hi-Tech Research and Development Program (863) of China
文摘A detailed mathematical model of a direct internal reforming solid oxide fuel cell(DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms,mass and energy conservation,and heat transfer. A computational fluid dynamics(CFD) method is used for solving the complicated multiple partial differential equations(PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations,temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further,the influence between distributions of chemical species concentrations,temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer,and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells,and can aid in stack design and control.
文摘One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.
基金This work was funded by the National High Technology Research and Development Program,the Natural Science Foundation of China
文摘Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering. One of the major challenges involves building a complex microchannel network inside three-dimensional (3D) scaffolds for efficient mass transportation. Here we presented a biomimetic strategy to generate a mi- crochannel network within porous biomaterial scaffolds by mimicking the vascular tree of rat liver. The typical parameters of the blood vessels were incorporated into the biomimetic design of the microchannel network such as branching angle and diameter. Silk fibroin-gelatin scaffolds with biomimetic vascular tree were fabricated by combining micromolding, freeze drying and 3D rolling techniques. The relationship between the micro-channeled design and flow pattern was revealed by a flow experiment, which indicated that the scaffolds with biomimetic vascular tree exhibited unique capability in improving mass transportation inside the 3D scaffold. The 3D scaffolds, preseeded with primary hepatocytes, were dynamically cultured in a bioreactor system. The results confirmed that the pre-designed biomimetic microchannel network facilitated the generation and expansion of hepatocytes.