Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this pape...Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.展开更多
In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperat...In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.展开更多
Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characte...Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characterize and optimize a particular mechanical minipump. The optimization work was conducted to cope with the conflict between pressure head and hydraulic efficiency by an improved back-propagation neural network (BPNN) with the non-dominated sorting genetic algorithm-II (NSGA-II). The improved BPNN was utilized to predicate hydraulic performance and, moreover, was modified to improve the prediction accuracy. The NSGA-II was processed for minipump multi-objective optimization which is dominated by four impeller dimensions. During hydraulic optimization, the processing feasibility was also taken into consideration. Experiments were conducted to validate the above optimization methods. It was proved that the optimized minipump was improved by about 24 % in pressure head and 4.75 % in hydraulic efficiency compared to the original designed prototype. Meanwhile, the sensitivity test was used to analyze the influence of the four impeller dimensions. It was found that the blade outlet angle β2 and the impeller inlet diameter Do significantly influence the pressure head H and the hydraulic efficiency η, respec- tively. Detailed internal flow fields showed that the optimum model can relieve the impeller wake and improve both the pressure distribution and flow orientation.展开更多
基金partially supported by the Fundamental Research Funds for the Central Universities under Grant No.2015JBM009the National Natural Science Foundation of China(NSFC) under Grant 61602030 U1404611,61301081+1 种基金the Project Funded by China Postdoctoral Science Foundation under Grant No.2016T90031,2015M570028 and 2015M580970the Program for Science & Technology Innovation Talents in the University of Henan Province under Grant No.16HASTIT035
文摘Mobile multimedia streaming is an open topic in vehicular environment. Due to the high intermittent links, it has become a critical challenge to deliver high quality video streaming in vehicular networks. In this paper, we reform the Information Centric Networking (ICN) concept for multimedia delivery in urban vehicular networks. By leveraging the 1CN perspective, we highlight that vehicular peers can obtain multimedia chunks via the vehicle-to-cloud (V2C) approach to improve the delivery quality. Based on this, we propose a lightweight multipath selection strategy to guide the network system to adaptively adjust the forwarding means. Extensive simulations show that the proposed solution can optimize the utilization of network paths, lighten network loads as well as avoid wasting resources.
文摘In this paper, a novel unsteady fluid network simulation method to compute the air system of jet engine was coded to predict the characteristics of pressure, temperature and mass flow rate of the flow and the temperature of the solid in the gas turbine engine. The fluid and solid areas are divided into the network comprised of branches and nodes, and the method solves transient mass, energy conservation equations at each node and momentum conservation equation at each branch by a newly deduced numerical method. With this method, to simulate complicated fluid and solid system in short time becomes possible. To verify the code developed, it has been applied to simulate a gas turbine model against the widely used commercial software Flowmaster. And the comparisons show that the two are in good agreement. Then the verified program is applied to the prediction of the characteristics of a designed turbine disk and air-cooling system associated to it, and useful information is obtained.
文摘Minipump is widely used in microfluidics system, active cooling system, etc. But building a high efficiency minipump is still a challenging problem. In this paper, a systematic method was developed to design, characterize and optimize a particular mechanical minipump. The optimization work was conducted to cope with the conflict between pressure head and hydraulic efficiency by an improved back-propagation neural network (BPNN) with the non-dominated sorting genetic algorithm-II (NSGA-II). The improved BPNN was utilized to predicate hydraulic performance and, moreover, was modified to improve the prediction accuracy. The NSGA-II was processed for minipump multi-objective optimization which is dominated by four impeller dimensions. During hydraulic optimization, the processing feasibility was also taken into consideration. Experiments were conducted to validate the above optimization methods. It was proved that the optimized minipump was improved by about 24 % in pressure head and 4.75 % in hydraulic efficiency compared to the original designed prototype. Meanwhile, the sensitivity test was used to analyze the influence of the four impeller dimensions. It was found that the blade outlet angle β2 and the impeller inlet diameter Do significantly influence the pressure head H and the hydraulic efficiency η, respec- tively. Detailed internal flow fields showed that the optimum model can relieve the impeller wake and improve both the pressure distribution and flow orientation.