In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The...In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.展开更多
Numerical simulations have been carded out for two-dimensional wavy falling liquid film in order to investigate kinetic energy and surface energy of that liquid film. Governing equations, which are continuity equation...Numerical simulations have been carded out for two-dimensional wavy falling liquid film in order to investigate kinetic energy and surface energy of that liquid film. Governing equations, which are continuity equation, Na-, vier-Stokes equation, and equations of interfacial boundary conditions including surface movement and effect of surface tension, have been solved directly by means of a numerical scheme based on the finite difference method. In most cases, periodic disturbances superimposed at inflow boundary grow to fully developed waves Which retain the given periodic behavior. In some cases, however, random waves appear after the fully developed waves. Variations of kinetic energy and surface energy of the periodically developed waves and the random waves have been discussed.展开更多
Based on the ERA-40 reanalysis data from the European Centre for Medium-Range Weather Forecasts and the output of ECHAM5/MPI-OM, this study investigated the interactions between the quasi-stationary planetary wave (...Based on the ERA-40 reanalysis data from the European Centre for Medium-Range Weather Forecasts and the output of ECHAM5/MPI-OM, this study investigated the interactions between the quasi-stationary planetary wave (SPW) and mean flow, and their responses to E1 Nifio-Southern Oscillation (ENSO) events in the northern hemispheric stratosphere. Results show that the activity of SPW is the strongest in winter, when the SPW propagates along the polar waveguide into the stratosphere and along the low-latitude waveguide to the subtropical tropopause. The analysis of three dimensional SPW structure indicates that the main sources of SPW activity are located over the Eurasian continent and the North Pacific north of 45°N. On the one hand, the two waveguides of the SPW reflect the influence of mean flow on the propagation of the SPW. On the other hand, the upward propagating SPW can interact with the stratospheric mean flow, leading to deceleration of the zonal mean westerly. Furthermore, the SPW exhibits clear responses to ENSO events. During E1 Nifio winters, the SPW in the strat- osphere tends to propagate more upward and poleward. Its interactions with mean flow can induce a dipole pattern in zonal mean zonal winds, with accelerated westerly winds at low-middle latitudes and decelerated westerly winds at high latitudes. The ECHAM5/MPI-OM model reproduces the climatology of the SPW well. Although the simulated SPW is slightly weaker than the observations in the stratosphere, the model's performance has significant improvements compared with other GCMs used in previous studies. However, there are still some problems in the responses of the SPW to ENSO in the model. Although the model reproduces the responses of both the amplitude and the SPW-mean flow interactions to ENSO well in the troposphere, the stratospheric responses are quite weak. Therefore, further studies are needed to improve the simulation of the stratospheric atmospheric circulation and related dynamical processes.展开更多
文摘In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.
文摘Numerical simulations have been carded out for two-dimensional wavy falling liquid film in order to investigate kinetic energy and surface energy of that liquid film. Governing equations, which are continuity equation, Na-, vier-Stokes equation, and equations of interfacial boundary conditions including surface movement and effect of surface tension, have been solved directly by means of a numerical scheme based on the finite difference method. In most cases, periodic disturbances superimposed at inflow boundary grow to fully developed waves Which retain the given periodic behavior. In some cases, however, random waves appear after the fully developed waves. Variations of kinetic energy and surface energy of the periodically developed waves and the random waves have been discussed.
基金supported by National Basic Research Program of China(Grant No. 2010CB428603)National Natural Science Foundation of China (Grant Nos. 41025017 and 40775035)
文摘Based on the ERA-40 reanalysis data from the European Centre for Medium-Range Weather Forecasts and the output of ECHAM5/MPI-OM, this study investigated the interactions between the quasi-stationary planetary wave (SPW) and mean flow, and their responses to E1 Nifio-Southern Oscillation (ENSO) events in the northern hemispheric stratosphere. Results show that the activity of SPW is the strongest in winter, when the SPW propagates along the polar waveguide into the stratosphere and along the low-latitude waveguide to the subtropical tropopause. The analysis of three dimensional SPW structure indicates that the main sources of SPW activity are located over the Eurasian continent and the North Pacific north of 45°N. On the one hand, the two waveguides of the SPW reflect the influence of mean flow on the propagation of the SPW. On the other hand, the upward propagating SPW can interact with the stratospheric mean flow, leading to deceleration of the zonal mean westerly. Furthermore, the SPW exhibits clear responses to ENSO events. During E1 Nifio winters, the SPW in the strat- osphere tends to propagate more upward and poleward. Its interactions with mean flow can induce a dipole pattern in zonal mean zonal winds, with accelerated westerly winds at low-middle latitudes and decelerated westerly winds at high latitudes. The ECHAM5/MPI-OM model reproduces the climatology of the SPW well. Although the simulated SPW is slightly weaker than the observations in the stratosphere, the model's performance has significant improvements compared with other GCMs used in previous studies. However, there are still some problems in the responses of the SPW to ENSO in the model. Although the model reproduces the responses of both the amplitude and the SPW-mean flow interactions to ENSO well in the troposphere, the stratospheric responses are quite weak. Therefore, further studies are needed to improve the simulation of the stratospheric atmospheric circulation and related dynamical processes.