The manipulation of the chromosome set for commercially valuable marine animals is important for enhancing aquacultural production. In this study, triploid and tetraploid sea cucumber Apostichopus japonicus were induc...The manipulation of the chromosome set for commercially valuable marine animals is important for enhancing aquacultural production. In this study, triploid and tetraploid sea cucumber Apostichopus japonicus were induced by hydrostatic pressure shock, and the conditions of appropriate induction were tested with different starting times, and hydrostatic pressure intensities and durations. The highest rate of triploid induction reached 20% and that of tetraploid was 60%. In consideration of the survival rate and hatch rate, the appropriate treatment for triploid was 55 Mpa of hydrostatic pressure for 5 rain at 55 min after fertilization (a.f.), while for tetraploid it was 60 Mpa for 5 rain at 61 min a.f. The triploid of the sea cucumber could survive through the pelagic larval stage and attachment stage, and develop like the control group of the experiment. The tetraploid, however, could not survive the attachment stage.展开更多
Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate, which have been included in material models to improve the reliability of numerical simulation...Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate, which have been included in material models to improve the reliability of numerical simulations of the material and structural responses under impact and blast loads. The strain-rate effects on the dynamic compressive strength of a range of engineering materials which behave in hydrostatic-stress-sensitive manner were investigated. It is concluded that the dynamic enhancement of the compressive strength of a hydrostatic-stress-sensitive material may include inertia-induced lateral confinement effects, which, as a non-strain-rate factor, may greatly enhance the compressive strength of these materials. Some empirical formulae based on the dynamic stress-strain measurements over-predict the strain-rate effects on the compressive strength of these hydrostatic-stress-sensitive materials, and thus may over-estimate the structural resistance to impact and blast loads, leading to non-conservative design of protective structures.展开更多
The authors investigate the sensitivity of hydrostatic pressure of flows through porous media with respect to the position of the soil layers. Indeed, these induce discontinuities of the porosity which is a piecewise ...The authors investigate the sensitivity of hydrostatic pressure of flows through porous media with respect to the position of the soil layers. Indeed, these induce discontinuities of the porosity which is a piecewise constant coefficient K of the partial differential equation satisfied by the pressure u and it leads to the computation of the derivative of u with respect to changes in position of discontinuity surface of K.The analysis relies on a mixed formulation of the problem. Preliminary numerical simulations are given to illustrate the theory. An application to a simple inverse problem is also given.展开更多
基金the National High-Tech Research and Development Program of China (863 Program, No.2506AA10A411)by the Dalian Natural Science Foundation (No. 99058)
文摘The manipulation of the chromosome set for commercially valuable marine animals is important for enhancing aquacultural production. In this study, triploid and tetraploid sea cucumber Apostichopus japonicus were induced by hydrostatic pressure shock, and the conditions of appropriate induction were tested with different starting times, and hydrostatic pressure intensities and durations. The highest rate of triploid induction reached 20% and that of tetraploid was 60%. In consideration of the survival rate and hatch rate, the appropriate treatment for triploid was 55 Mpa of hydrostatic pressure for 5 rain at 55 min after fertilization (a.f.), while for tetraploid it was 60 Mpa for 5 rain at 61 min a.f. The triploid of the sea cucumber could survive through the pelagic larval stage and attachment stage, and develop like the control group of the experiment. The tetraploid, however, could not survive the attachment stage.
文摘Many engineering materials demonstrate dynamic enhancement of their compressive strength with the increase of strain-rate, which have been included in material models to improve the reliability of numerical simulations of the material and structural responses under impact and blast loads. The strain-rate effects on the dynamic compressive strength of a range of engineering materials which behave in hydrostatic-stress-sensitive manner were investigated. It is concluded that the dynamic enhancement of the compressive strength of a hydrostatic-stress-sensitive material may include inertia-induced lateral confinement effects, which, as a non-strain-rate factor, may greatly enhance the compressive strength of these materials. Some empirical formulae based on the dynamic stress-strain measurements over-predict the strain-rate effects on the compressive strength of these hydrostatic-stress-sensitive materials, and thus may over-estimate the structural resistance to impact and blast loads, leading to non-conservative design of protective structures.
文摘The authors investigate the sensitivity of hydrostatic pressure of flows through porous media with respect to the position of the soil layers. Indeed, these induce discontinuities of the porosity which is a piecewise constant coefficient K of the partial differential equation satisfied by the pressure u and it leads to the computation of the derivative of u with respect to changes in position of discontinuity surface of K.The analysis relies on a mixed formulation of the problem. Preliminary numerical simulations are given to illustrate the theory. An application to a simple inverse problem is also given.