期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
流体-流体模型裸眼井的声场理论分析与数值计算 被引量:2
1
作者 梁法库 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2002年第4期383-387,共5页
对流体-流体模型的裸眼井中可能存在的声场进行理论分析与数值计算,得出井内全波是由滑行p波、简正波和漏模式波组成的.证实了简正波的存在,澄清有关流-固模型慢地层情况下不存在简正波的结论,得出广义上的慢地层概念及发现漏模式存在... 对流体-流体模型的裸眼井中可能存在的声场进行理论分析与数值计算,得出井内全波是由滑行p波、简正波和漏模式波组成的.证实了简正波的存在,澄清有关流-固模型慢地层情况下不存在简正波的结论,得出广义上的慢地层概念及发现漏模式存在的范围和规律. 展开更多
关键词 流体-流体模型 裸眼井 声场 理论分析 数值计算 漏模式 斯通利波 简正波
下载PDF
流体-流体相互作用模型的无条件稳定格式
2
作者 李伟 黄鹏展 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第5期522-529,共8页
流体-流体相互作用模型是大气海洋模型的一个简单形式.通过考虑求解流体-流体相互作用问题的数值逼近方法,建立了全离散方法的无条件稳定性,并通过数值实验验证了理论结果.
关键词 流体-流体相互作用模型 修正标量辅助变量技巧 无条件稳定
下载PDF
基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟 被引量:6
3
作者 彭国良 张俊杰 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第18期107-113,共7页
提出了描述高空核爆炸碎片云运动的流体-磁流体-粒子(particle-in-cell,PIC)混合模型,相较目前的主流模型,该模型能够计算更加广泛的空间尺度.根据碎片云运动涉及的高温离子、低温离子和中性大气的不同性质,采用三种模型进行联合求解:... 提出了描述高空核爆炸碎片云运动的流体-磁流体-粒子(particle-in-cell,PIC)混合模型,相较目前的主流模型,该模型能够计算更加广泛的空间尺度.根据碎片云运动涉及的高温离子、低温离子和中性大气的不同性质,采用三种模型进行联合求解:高温离子用PIC粒子模型计算,低温离子用磁流体模型计算,中性大气用流体模型计算,并将三者之间的相互作用作为源项加入相应的控制方程.最后,计算了美国Starfish试验中碎片云的扩展情况,与试验结果进行了比对,并验证了求解方案的可靠性.此外,还给出了不同投影角度下碎片云形状随时间的变化,并分析了影响碎片云运动的主要因素,包括大气阻力、磁压、槽型不稳定性和霍尔电流等. 展开更多
关键词 高空核爆炸 流体-磁流体-粒子混合模型 碎片云
下载PDF
Local Flow Regime Transition Criteria of Gas-Liquid Two-phase Flow in Vertical Upward Tube with a Horizontal Rod 被引量:4
4
作者 胡志华 杨燕华 +1 位作者 刘磊 周芳德 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4期442-449,共8页
The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vert... The upward multiphase cross flow and heat transfer in the vertical tube may occur in oil production and chemical facilities. In this study, the local flow patterns of an upward gas-water two phase cross flow in a vertical tube with a horizontal rod have been investigated with an optical probe and the digital high speed video system. The local flow patterns are defined as the bubble, slug, churn and annular flow patterns. Optical probe signals are ana- lyzed in terms of probability density function, and it is proved that the local flow patterns can be recognized by this method. The transition mechanisms between the different flow patterns have been analyzed and the corresponding transitional models are proposed. Finally, local flow pattern maps of the upward gas-water two-phase flow in the vertical tube with a horizontal rod are constructed. 展开更多
关键词 GAS-LIQUID two-phase cross flow local flow pattern transition
下载PDF
Theoretical analysis of fluid mixing time in liquid-continuous impinging streams reactor 被引量:3
5
作者 罗燕 周剑秋 +2 位作者 郭钊 余蓓 熊卉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3217-3222,共6页
The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of ma... The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions. 展开更多
关键词 impinging stream reactor empirical model theoretical model mixing time comparative analysis
下载PDF
Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field 被引量:14
6
作者 汪彬 杨院生 +1 位作者 马晓平 童文辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期283-288,共6页
The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pu... The effects of a pulsed magnetic field on the solidified microstructure of pure Mg were investigated.The results show that microstructure of pure Mg is considerably refined via columnar-to-equiaxed growth under the pulsed magnetic field and the average grain size is refined to 260?? under the optimal processing conditions.A mathematical model was built to describe the interaction of the electromagnetic-flow fields during solidification with ANSYS software.The pulsed electric circuit was first solved and then it is substituted into the magnetic field model.The fluid flow model was solved with the acquired electromagnetic force.The effects of pulse voltage frequency on the current wave and on the distribution of magnetic and flow fields were numerically studied.The pulsed magnetic field increases melt convection,which stirs and fractures the dendritic arms into pieces.These broken pieces are transported into the bulk liquid by the liquid flow and act as nuclei to enhance grain refinement.The Joule heat effect produced by the electric current also participates in the microstructural refinement. 展开更多
关键词 pulsed magnetic field numerical simulation pure Mg microstructure refinement
下载PDF
CFD Simulation of Orifice Flow in Orifice-type Liquid Distributor 被引量:2
7
作者 Yu Hongfeng Li Xingang +1 位作者 Sui Hong Li Hong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第3期70-78,共9页
In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in... In this study,a suitable CFD(computational fluid dynamics)model has been developed to investigate the influence of liquid height on the discharge coefficient of the orifice-type liquid distributors.The orifice flow in different diameters and liquid heights has been realized using the shear stress transport(SST)turbulence model and the Gamma Theta transition(GTT)model.In the ANSYS CFX software,two models are used in conjunction with an automatic wall treatment which allows for a smooth shift from a wall function(WF)to a low turbulent-Re near wall formulation(LTRW).The results of the models coupled with LTRW are closer to the experimental results compared with the models with WF,indicating that LTRW is more appropriate for the prediction of boundary layer characteristics of orifice flow.Simulation results show that the flow conditions of orifices change with the variation of liquid height.With respect to the turbulence in orifice,the SST model coupled with LTRW is recommended.However,with respect to the transition to turbulence in orifice with an increase in liquid height,the predictions of GTT model coupled with LTRW are superior to those obtained using other models. 展开更多
关键词 discharge coefficient orifice-type liquid distributors CFD liquid height
下载PDF
The Surface Plasmons' Frequencies of Two Adjacent Metallic Nanospheres by Bloch-Jensen Hydrodynamical Model
8
作者 Moslem Mirasmouri Saeid Rostami 《Journal of Physical Science and Application》 2013年第1期54-57,共4页
The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at me... The wave guides and optical fibers have long been known to transmit light and electromagnetic fields in large dimensions. Recently, surface plasmons, which are collective plasma oscillations of valence electrons at metal surfaces, have been introduced as an entity that is able to guide light on the surfaces of the metal and to concentrate light in subwavelength volumes. It has been found that periodic array of metallic nanospheres, could be able to enhance the light transmission, and guiding light at nanoscale. The coupling between two nanoparticles in these devices is very important. The Bloch-Jensen hydrodynamical method has been used for computing surface plasmons' frequencies of a single metallic nanosphere. It contains the entire pole spectrum automatically, so it is more exactly than the other computational methods. In this research, we have computed the surface plasmons' frequencies of two adjacent nanospheres by Bloch-Jensen hydrodynamical model for the first time. The results show that there are two modes for this system, which depend explicitly on interparticle spacing. In addition, we have shown that the excitation modes yield to a single mode of a nanoparticle as the interparticle spacing increases. 展开更多
关键词 Surface plasmons plasmon-polaritons nanoparticles nanophotonics.
下载PDF
Numerical Simulation of Countercurrent Flow in a PWR Hot Leg by Using Two-Fluid Model
9
作者 Michio Murase Yoichi Utanohara +3 位作者 Chihiro Yanagi Takashi Takata Akira Yamaguchi Akio Tomiyama 《Journal of Energy and Power Engineering》 2013年第7期1215-1222,共8页
In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid)... In order to evaluate CCFL (countercurrent flow limitation) characteristics in a PWR (pressurized water reactor) hot leg under reflux condensation, numerical simulations have been conducted using a 2F (two-fluid) model and a VOF (volume of fluid) method implemented in the CFD (computational fluid dynamics) software, FLUENT6.3.26. The 2F model gave good agreement with CCFL data in low pressure conditions but did not give good results for high pressure steam-water conditions. In the previous study, the computational grid and schemes were improved in the VOF method to improve calculations in circular tubes, and the calculated CCFL characteristics agreed well with the UPTF (Upper Plenum Test Facility) data at 1.5 MPa. In this study, therefore, using the 2F model and the computational grid previously improved for the VOF calculations, numerical simulations were conducted for steam-water flows at 1.5 MPa under PWR full-scale conditions. In the range of medium gas volumetric fluxes, the calculated CCFL characteristics agreed well with the values calculated by the VOF method and the UPTF data at 1.5 MPa. This indicated that the reference set of the interfacial drag correlations employed in this study could be applied not only to low pressures but also to high pressures. 展开更多
关键词 Reflux condensation PWR hot leg countercurrent flow numerical simulation two-fluid model.
下载PDF
Simulation of Steady-State and Dynamic Behaviour of a Plate Heat Exchanger
10
作者 Mohammad Aqeel Saraireh 《Journal of Energy and Power Engineering》 2016年第9期555-560,共6页
The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temp... The present paper deals with both the steady-state and dynamic simulation of a plate heat exchanger, in counter-flow arrangement. A CFD (computational fluid dynamics) program FLUENT has been used to predict the temperature distribution in steady-state conditions in plate heat exchanger as well as fluid temperatures at exit of flow channels in transient condition. The results are presented for the heat exchanger, which is simulated according to the configuration of the plate heat exchanger used in the experiment. The simulated results obtained by the CFD model have been compared with the experimental data from the literature, which shows that the CFD model developed in this study is capable of predicting the steady-state and transient performance of the plate heat exchangers satisfactorily. 展开更多
关键词 Heat exchanger STEADY-STATE CFD SIMULATION
下载PDF
Comparison of numerical simulations and experiments in conical gas–solid spouted bed 被引量:2
11
作者 王淑彦 邵宝力 +4 位作者 刘锐 赵健 刘扬 刘义坤 杨树人 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1579-1586,共8页
Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height ... Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed. 展开更多
关键词 FLUIDIZATION Simulation EXPERIMENT Conical spouted bed Drag coefficient model Computational fluid dynamics
下载PDF
Numerical Simulation of Seaplane Wave Ground Effect with Crosswind 被引量:3
12
作者 LI Yanghui FU Xiaoqin +1 位作者 CHEN Jichang TONG Mingbo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期1-9,共9页
Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristic... Under the absolute coordinate system, the unsteady Reynolds averaged Navier-Stokes(URANS)equations and the k-ω SST turbulence model are solved using the finite volume method to simulate the aerodynamic characteristics of large seaplane flying with the ground-effect above wavy surface. The velocity inlet wave-making method and the volume of fluid model are used to accurately simulate the linear regular waves and to precisely capture the free surface. This paper studies the influence of the sideslip angle on the aerodynamic characteristics of large seaplane when it is cruising above wavy water. The results show that the wave surface mainly affects the pressure distribution on the lower surface of the wing. When the sideslip angle varies from 0° to 8°,the varying of frequency of aerodynamic forces is consistent with the wave encounter frequency,and both periods are 0.6 s. With the increase of the sideslip angle,the lift coefficient and the pitching moment coefficient decrease. However,when the sideslip angle is smaller than 4°,the decrease amplitude is small,and the significant decrease occurs above 4° and during the whole process of the change of sideslip angle,the aerodynamic fluctuation amplitude is almost unchanged. As the drag coefficient increases with the increase of sideslip angle,significant increase also occurs when the value is greater than4°,and the fluctuation amplitude does not show any correlations. The rolling moment coefficient and yaw moment coefficient increase with the increase of the sideslip angle,and the fluctuation amplitudes of both increase linearly with the increase of the sideslip angle. 展开更多
关键词 two-phase flow wing-in-ground(WIG)effect volume of fluid(VOF)model velocity-inlet boundary wave maker
下载PDF
CFD aided investigation of single droplet coalescence 被引量:2
13
作者 Felix Gebauer Mark W.Hlawitschka Hans-Jorg Bart 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第2期249-252,共4页
This article describes the development of a coalescence model using various CFD work packages,and is validated using as toluene water model system.Numerical studies were performed to describe droplet interactions in l... This article describes the development of a coalescence model using various CFD work packages,and is validated using as toluene water model system.Numerical studies were performed to describe droplet interactions in liquid–liquid test systems.Current models use adjustable parameters to describe these phenomena.The research in the past decades led to different correlations to model coalescence and breakage depending on the chemical system and the apparatus geometry.Especially the complexity of droplet coalescence requires a detailed investigation of local phenomena during the droplet interaction.Computational fluid dynamics(CFD) studies of single droplet interactions were performed and validated with experimental results to improve the understanding of the local hydrodynamics and film drainage during coalescence.The CFD simulations were performed for the interaction of two differently sized droplets at industrial relevant impact velocities.The experimental verification and validation of the numerical results were done with standardized high-speed imaging studies by using a special test cell with a pendant and a free rising droplet.An experimental based algorithm was implemented in the open source code OpenF OAM to account for the contact time and the dimple formation.The standard European Federation of Chemical Engineering(EFCE) test system toluene/water was used for the numerical studies and the experimental investigations as well.The results of the CFD simulations are in good accordance with the observed coalescence behavior in the experimental studies.In addition,a detailed description of local phenomena,like film rupture,velocity gradients,pressures and micro-droplet entrainment could be obtained. 展开更多
关键词 CFD Parameter estimation COALESCENCE Film drainage
下载PDF
Numerical Hydrodynamics Study Around Turbine Array of Tidal Stream Farm in Zhoushan, China 被引量:1
14
作者 YU Zhiwen ZHANG Jisheng +2 位作者 ZHAI Yanyan ZHANG Tiantian ZHENG Jinhai 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第4期703-708,共6页
In recent decades,great efforts have been made to efficiently explore tidal stream energy due to its unique advantages of easy prediction and great potential.China recently launched a national tidal stream farm demons... In recent decades,great efforts have been made to efficiently explore tidal stream energy due to its unique advantages of easy prediction and great potential.China recently launched a national tidal stream farm demonstration project in the waterway between Putuoshan and Hulu Islands in the Zhoushan area.Before deployment of the turbine array,it is necessary to understand the hydrodynamic changes associated with the construction of a turbine array.In this study,we developed a depth-averaged hydrodynamics model that solves the shallow water governing equations to simulate the tidal hydrodynamics around the Zhoushan Archipelago.The simulation results agree with field data in terms of the water elevation and stream velocity.We considered two types of turbine arrays in this study and investigated their impacts on the local hydrodynamics.In general,the stream velocity in the northern and southern areas is reduced due to the power take-off of the turbine array,whereas stream velocity in the western and eastern areas is slightly increased due to the blockage impact of the turbine array. 展开更多
关键词 tidal stream farm turbine array tidal hydrodynamics numerical simulation demonstration project
下载PDF
Motion Characteristics of Novel Floating Foundation for Offshore Wind Turbine 被引量:1
15
作者 李嘉文 唐友刚 王宾 《Transactions of Tianjin University》 EI CAS 2016年第1期57-63,共7页
A novel floating foundation to support the NREL offshore 5 MW wind turbine was designed conceptually by combining the characteristics of barge and Spar. The main focus was structural design and hydrodynamic modelling.... A novel floating foundation to support the NREL offshore 5 MW wind turbine was designed conceptually by combining the characteristics of barge and Spar. The main focus was structural design and hydrodynamic modelling. Based on this novel floating foundation, the hydrodynamic performance was investigated in the frequency domain and time domain by using the wave analysis software Hydro D and Deep C from Det Norske Veritas. The frequency domain analysis was conducted to investigate the effects of the incident wave angle and water depth. The time-domain analysis was carried out to evaluate the response of the floating foundation under a selected operational condition. The hydrodynamic performances of this floating foundation with respect to time series and response spectra were also investigated in this study. 展开更多
关键词 offshore wind turbine floating foundation frequency domain analysis time domain analysis
下载PDF
Urban Green Space Planning Based on Computational Fluid Dynamics Model and Landscape Ecology Principle:A Case Study of Liaoyang City,Northeast China 被引量:9
16
作者 ZHOU Yuan SHI Tiemao +4 位作者 HU Yuanman GAO Chang LIU Miao FU Shilei WANG Shizhe 《Chinese Geographical Science》 SCIE CSCD 2011年第4期465-475,共11页
As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using... As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using the computational fluid dynamics (CFD) model,landscape ecological principles and Geographical Information System (GIS).Based on the influencing factors of topography,building density and orientation,Shou Mountain,Longding Mountain and the Taizi River were selected as the urban ventilation paths to promote wind and oxygen circulation.Oxygen concentration around the green spaces gradually decreased with wind speed increase and wind direction change.There were obvious negative correlation relationships between the oxygen dispersion concentration and urban layout factors such as the building plot ratio and building density.Comparison with the field measurements found that there was significant correlation relationship between simulated oxygen concentration and field measurements (R 2=0.6415,p<0.001),moreover,simulation precision was higher than 92%,which indicated CFD model was effective for urban oxygen concentration simulation.Only less than 10% areas in Liaoyang City proper needed more green space urgently to improve oxygen concentration,mainly concentrated in Baitai and west Wensheng districts.Based on land-scape ecology principle,green space planning at different spatial scales were proposed to create a green space network system for Liaoyang City,including features such as green wedges,green belts and parks.Totally,about 2012 ha of green space need to be constructed as oxygen sources and ventilation paths.Compared with the current green space pattern,proposed green space planning could improve oxygen concentration obviously.The CFD model and research results in this paper could provide an effective way and theory support for sustainable development of urban green space. 展开更多
关键词 green space computational fluid dynamics oxygen dispersion pattern landscape ecology Liaoyang City proper
下载PDF
The Research on Optimization of the Multiphase Flow Field of Biogas Plant by Using CFD Software 被引量:5
17
作者 Ruyi Huang Yan Long +3 位作者 Tao Luo Zili Mei Jun Wang Enshen Long 《Journal of Energy and Power Engineering》 2014年第6期1038-1046,共9页
The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far a... The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium. 展开更多
关键词 Biogas plant MIXING multiphase flow CFD flow simulation.
下载PDF
Hydrodynamics of Liquid Flow in the Model of Theoretical Stage with Perfect Displacement
18
作者 Volodymyr Maletal Vitaliy Taran Bogdan Maleta 《Journal of Chemistry and Chemical Engineering》 2011年第1期25-29,共5页
For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrody... For the cyclic process of mass transfer in tray columns there are considered the hydrodynamic models of liquid flow during steam supply and during overflow of liquid from tray to tray. During steam supply, the hydrodynamic model is determined as perfect displacement model, and during liquid overflow, it is described as cell model. There were received the characteristics of liquid flow as follows: average residence time of liquid, degree of dispersion around the mean on the tray, number of perfect mixing cells depending on multiplication factor of exchange of liquid delay. In Y-X coordinates there is depicted a work line and theoretical stage of perfect displacement model. There were considered the conditions of mutual transfer of theoretical stage and theoretical stage with perfect displacement. The advantages of the mass transfer cyclic process to the stationary one arc stated. 展开更多
关键词 mass transfer cyclic distillation theoretical stage the theoretical stage model with perfect displacement residence time
下载PDF
Modeling of Fluidized Bed Gasification:Assessment of Zero-dimensional and CFD Approaches 被引量:1
19
作者 Nuno Couto Valter Silva +2 位作者 Eliseu Monteiro P.S.D.Brito Abel Rouboa 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第4期378-385,共8页
In modeling fluidized bed gasification experiments,equilibrium and CFD models are valuable options.The existence of multi-dimensional effects inside the reactor vessel due to the kinetics of the process and the fluid ... In modeling fluidized bed gasification experiments,equilibrium and CFD models are valuable options.The existence of multi-dimensional effects inside the reactor vessel due to the kinetics of the process and the fluid dynamics phenomena could result in deviation from the zero-dimensional assumption.Complex models integrating kinetics and hydrodynamics are being developed by using a computer fluid dynamics(CFD)approach.The objective of this investigation is to assess and compare the adequacy of zero-dimensional and CFD approaches in modeling fluidized bed gasification regarding a semi-industrial scale(numerical results are validated under experimental runs).Results show that the zero-dimensional model based on the approach of dual stage equilibrium performs reasonably well in adequately predicting the product gas composition at different operating conditions and for different feedstocks,although with quantitative discrepancy.Furthermore,the discrepancy depends on the oxygen content of the oxidation agent and on the steam-to biomass ratio decreasing when these parameters increased.CFD models provide deeper information being able to estimate the syngas composition or other operating parameter at any point of space and time.Despite of some quantitative discrepancy,the zero-dimensional modeling approach is deemed satisfactory from the viewpoint of the determining design conditions simulation. 展开更多
关键词 GASIFICATION CFD model Dual stage equilibrium model
原文传递
Studying Validity of Single-Fluid Model in Inertial Confinement Fusion
20
作者 谷建法 范证锋 +3 位作者 戴振生 叶文华 裴文兵 朱少平 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第3期370-376,共7页
The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and inte... The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path A, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/A is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results. 展开更多
关键词 multi-fluid model interpenetration mixing inertial confinement fusion
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部