The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demons...The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demonstrates that the effective surface doping concentration and the interface state density of the pocket or halo region are interface states R G current peak position dependent and amplitude dependent,respectively.It can be expressed quantitatively according to the device physics knowledge,thus,the direct characterization of the interface state density and the effective surface doping concentration of the pocket or halo becomes very easy.展开更多
Rapid mixing and chlorine saving are two important problems that most drinking water industries are focus on, and this paper adopts chemical induction unit to compare with water jet injector to study what merits chemi...Rapid mixing and chlorine saving are two important problems that most drinking water industries are focus on, and this paper adopts chemical induction unit to compare with water jet injector to study what merits chemical induction unit has. The experiment chose coefficient of variability of chlorine concentration to evaluate the mix effect and used chlorine consumption to compare the two equipments. Distribution reservoir experiments show that chemical induction unit can completely mix chlorine less than 6.2 seconds and water jet injector can not completely mix in 3 minutes. Mixing pool experiments show that chemical induction unit can save chlorine compared with water jet injector, and can save more if more chlorine is consumed.展开更多
Motivation of this work has its origin in the boundary layer control for aeronautics and turbomachinery. For thatpurpose boundary layer can be modified by perforated plates with holes of specific sizes. The questions ...Motivation of this work has its origin in the boundary layer control for aeronautics and turbomachinery. For thatpurpose boundary layer can be modified by perforated plates with holes of specific sizes. The questions whichrise in such configuration are related to the existence of optimal size of the holes and the influence of microscalephenomena on the global flow patterns. This paper concentrates on the issue of the entrance effects on the microchannelflow. It is shown that mass flow rate is only insignificantly influenced by slip effects. Global parameterssuch as pressure difference and geometrical shape in more pronounced way alter flow behavior. In this paper weconcentrate on the numerical investigation of the microchannel flow for Kn < 0.01 and Re < 500. The channellength is finite. Hence, entrance and outlet effects on microchannel flow can be studied.展开更多
Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moment...Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.展开更多
文摘The channel lateral pocket or halo region of NMOSFET characterized by interface state R G current of a forward gated diode has been investigated numerically for the first time.The result of numerical analysis demonstrates that the effective surface doping concentration and the interface state density of the pocket or halo region are interface states R G current peak position dependent and amplitude dependent,respectively.It can be expressed quantitatively according to the device physics knowledge,thus,the direct characterization of the interface state density and the effective surface doping concentration of the pocket or halo becomes very easy.
文摘Rapid mixing and chlorine saving are two important problems that most drinking water industries are focus on, and this paper adopts chemical induction unit to compare with water jet injector to study what merits chemical induction unit has. The experiment chose coefficient of variability of chlorine concentration to evaluate the mix effect and used chlorine consumption to compare the two equipments. Distribution reservoir experiments show that chemical induction unit can completely mix chlorine less than 6.2 seconds and water jet injector can not completely mix in 3 minutes. Mixing pool experiments show that chemical induction unit can save chlorine compared with water jet injector, and can save more if more chlorine is consumed.
文摘Motivation of this work has its origin in the boundary layer control for aeronautics and turbomachinery. For thatpurpose boundary layer can be modified by perforated plates with holes of specific sizes. The questions whichrise in such configuration are related to the existence of optimal size of the holes and the influence of microscalephenomena on the global flow patterns. This paper concentrates on the issue of the entrance effects on the microchannelflow. It is shown that mass flow rate is only insignificantly influenced by slip effects. Global parameterssuch as pressure difference and geometrical shape in more pronounced way alter flow behavior. In this paper weconcentrate on the numerical investigation of the microchannel flow for Kn < 0.01 and Re < 500. The channellength is finite. Hence, entrance and outlet effects on microchannel flow can be studied.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322101,51231004 and 51571128)the Ministry of Science and Technology of China(Grant No.2014AA032904)
文摘Manipulation of antiferromagnetic(AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in[Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction,the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.