this paper mainly discusses the design of distributed effluenttreatment systems with single contami- nant. A new method is putforward and four basic rules are provided. The key point of themethod is that global optima...this paper mainly discusses the design of distributed effluenttreatment systems with single contami- nant. A new method is putforward and four basic rules are provided. The key point of themethod is that global optimality is obtained by guaranteeing theoptimality of each step taken in the design. Costs per unit mass ofremoved contaminant are used as a scale to choose the nextcombination of an effluent stream and a treatment process. Theremaining problem is updated after each choice. As for multiplecontaminants, a two-stage method is adopted.展开更多
This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
2022年11月14日浙江大学白瑞良团队联合山东省立医院刘英超团队在Nature子刊《Nature Biomedical Engineering》杂志(2022年影响因子为29.234)发表了研究论文,题目为“Transmembrane water-efflux rate measured by magnetic resonance ...2022年11月14日浙江大学白瑞良团队联合山东省立医院刘英超团队在Nature子刊《Nature Biomedical Engineering》杂志(2022年影响因子为29.234)发表了研究论文,题目为“Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas”(https://www.nature.com/articles/s41551-022-00960-9)。展开更多
The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upst...The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.展开更多
In order to select the appropriate working fluids and optimize parameters for medium-temperature geothermally-powered organic Rankine cycle(ORC), R245 fa is mixed with R601 a at geothermal water temperature of 110 ℃....In order to select the appropriate working fluids and optimize parameters for medium-temperature geothermally-powered organic Rankine cycle(ORC), R245 fa is mixed with R601 a at geothermal water temperature of 110 ℃. Based on thermodynamics, the characteristics of mixture and its influence on the performance of ORC under different evaporating temperatures and composition proportions are analyzed. Results show that the zeotropic mixture R245fa/R601a(0.4/0.6) has the highest performance. When the evaporating temperature reaches 67 ℃, the outlet temperature of geothermal water is 61 ℃, the net power output is the highest and the thermal efficiency is about 9%.展开更多
To study the mechanism of unsteady heat-moisture transfer of wet surrounding rock in deep mining, a series of experiments with different initial and boundary conditions were carried out. Test results show that rock te...To study the mechanism of unsteady heat-moisture transfer of wet surrounding rock in deep mining, a series of experiments with different initial and boundary conditions were carried out. Test results show that rock temperature decreases quickly at the initial stage, and reduces slowly to be a constant value finally for transient heat-moisture transfer. The quasi-steady surface temperature of wet airway is lower than that of dry airway due to the moisture transfer. The diffusion radius is less than the cooling radius owing to the large diffusion resistance. The outlet airflow enthalpy of wet airway is much larger than that of dry airway. Latent heat caused by the moisture transfer plays a significant role in a deep thermal environment. For periodic heat-moisture transfer, temperature, humidity and enthalpy of outlet airflow and rock temperature also change periodically. The wave amplitude of rock temperature decreases gradually with increasing distance away from the airway surface, and the wave phase of rock temperature is also behind that of airflow. Moreover, direction of the heat-moisture transfer between airway and airflow is bidirectional, which is different from results of transient transfer.展开更多
Operating principle of water three-way valve with high flow for individual hydraulic prop in coal was presented in this paper, its strict and precise mathematical model was established, its flow field was simulated nu...Operating principle of water three-way valve with high flow for individual hydraulic prop in coal was presented in this paper, its strict and precise mathematical model was established, its flow field was simulated numerically by software Fluent, and its dynamic characteristics were analyzed during the work process such as raising leg, loading and overflow, the influence of the related parameters on high-flow water three-way valve was determined. The results as follows: during the raising leg stage and early raising leg stage, when the damping ratio increases, the overshoot of system decreases and the setting time reduces, and the dynamic response performance has a significant improvement. During the loading stage and the overflow stage, the pressure in plunger chamber of single hydraulic prop, the output flow and the displacement of the high-flow water three-way valve decrease with the decreasing of the external load. The spring stiffness of the safety valve directs the flow and the spool's displacement of the safety valve, and it can be used to control the high-flow three-way valve's sensitivity.展开更多
Flows through an open cross-flow-type nano-hydraulic turbine are numerically simulated to investigate the effects of the clearance Hc between the rotor and the ground on the turbine performance. A two-dimensional part...Flows through an open cross-flow-type nano-hydraulic turbine are numerically simulated to investigate the effects of the clearance Hc between the rotor and the ground on the turbine performance. A two-dimensional particle method is employed, which was successfully used for flow simulations of impulse-type and open cross-flow-type nano-hydraulic turbines in the authors' previous works. When the clearance Hc is smaller than a critical value, the simulated turbine performance decreases with decreasing Hc, in good agreement with the experiment. The simulations make it clear that such a reduction of turbine performance is attributable to an increase in the circumferential component of the water velocity at the rotor outlet. The simulations also demonstrate that the effect of the tip speed ratio of the rotor on the relation between Hc and turbine performance can be analyzed.展开更多
This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle(ORC).The variation and tendency...This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle(ORC).The variation and tendency of the net power output with water temperature and correlated with the critical temperature of working fluids is investigated.Four characteristic curves of the net power output at particular water temperature(Tw_turn,Tw_app,Tw_tran and Tw_up)and their temperature difference(△T_turn=Tw_turn△Tcr,△T_app=Tw_app△Tcr)are obtained to evaluate the working fluids.The curve at"applicable water temperature(Tw_app)"is a demarcation to differentiate the net power output from low to high.The"upper water temperature(Tw_up)"is an upper limit of the water temperature to yield the higher net power output.A relation is built that the suitable water temperature is within the Tw_app and Tw_up of the working fluid.展开更多
As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed...As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed as a leading nitrate source for stream water where groundwater or subsurface flow contaminated heavily by nitrate. That is, sufficient improvements of water quality may not be attained without proper management for baseflow, even if non-point sources(NPS) pollutants discharged through surface runoff are being well managed. This article reviews the primary nitrate sources, the main factors affecting its transport, and the methodologies for baseflow nitrate estimation, to give some recommendations for future works, including:(1) giving sufficient consideration for the effects of climatological, morphological, and geological factors on baseflow recessions to obtain more reliable and accurate baseflow separation;(2) trying to solve calibration and validation problems for baseflow loads determining in storm flow period;(3) developing a simple and convenient algorithm with certain physics that can be used to separate baseflow NPS pollution from the total directly in different regions, for a reliable estimation of baseflow NPS pollution at larger scale(e.g., national scale);(4) improving groundwater quality simulation module of existing NPS pollution models to have a better simulation for biogeochemical processes in shallow aquifers;(5) taking integrated measures of "source control", "process interception" and "end remediation" to prevent and control NPS nitrate pollution effectively, not just only the strict control of nutrients loss from surface runoff.展开更多
文摘this paper mainly discusses the design of distributed effluenttreatment systems with single contami- nant. A new method is putforward and four basic rules are provided. The key point of themethod is that global optimality is obtained by guaranteeing theoptimality of each step taken in the design. Costs per unit mass ofremoved contaminant are used as a scale to choose the nextcombination of an effluent stream and a treatment process. Theremaining problem is updated after each choice. As for multiplecontaminants, a two-stage method is adopted.
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
文摘2022年11月14日浙江大学白瑞良团队联合山东省立医院刘英超团队在Nature子刊《Nature Biomedical Engineering》杂志(2022年影响因子为29.234)发表了研究论文,题目为“Transmembrane water-efflux rate measured by magnetic resonance imaging as a biomarker of the expression of aquaporin-4 in gliomas”(https://www.nature.com/articles/s41551-022-00960-9)。
基金supported by the China Meteorological Data Sharing Service System,the Bureau of Hydrology,and Water Resources of Sichuan Province,China
文摘The Western Route of the South-to-North Water Diversion Project is an important trans-basin diversion project to transfer water from the upstream Yangtze River and its tributaries (water-exporting area), to the upstream of the Yellow River (water- importing area). The long-term hydrologieal data from 14 stream gauging stations in the Western Route area and techniques including the pre-whitening approach, non-parametric test, Bayes, law, variance analysis extrapolation, and Wavelet Analysis are applied to identify the streamflow eharacteristics and trends, streamflow time series cross-correlations, wetness-dryness encountering probability, and periodicities that occurred over the last 50 years. The results show that the water-exporting area, water- importing area, and the streteh downstream of the water-exporting have synehronization in high-low flow relationship, whereas they display non- synchronization in long-term evolution. This corresponds to the complicated and variable climate of the plateau region. There is no obvious increasing or decreasing trend in runoff at any gauging station. The best hydrological eompensation probability for rivers where water is diverted is about 25% to lO%, and those rivers influenced significantly by diversion are the Jinsha and Yalong rivers. Proper planning and design of compensation reservoirs for the water-exporting area and stretch downstream of the water- exporting area can increase the hydrological compensation possibility from water-exporting area to the water-importing area, and reduce the impact on the stretch of river downstream of the water- exporting area.
基金Supported by the National High Technology Research and Development Program of China("863" Program,No.2012AA053001)
文摘In order to select the appropriate working fluids and optimize parameters for medium-temperature geothermally-powered organic Rankine cycle(ORC), R245 fa is mixed with R601 a at geothermal water temperature of 110 ℃. Based on thermodynamics, the characteristics of mixture and its influence on the performance of ORC under different evaporating temperatures and composition proportions are analyzed. Results show that the zeotropic mixture R245fa/R601a(0.4/0.6) has the highest performance. When the evaporating temperature reaches 67 ℃, the outlet temperature of geothermal water is 61 ℃, the net power output is the highest and the thermal efficiency is about 9%.
基金Foundation item: Project(2012CB026103) supported by the National Basic Research Program of China Project(51204170) supported by the National Natural Science Foundation of China+2 种基金 Project(2011M500974) supported by Postdoctoral Science Foundation of China Project (2011QNA16) supported by Fundamental Research Funds for the Central Universities, China Project(PDll01) supported by Postdoctoral Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering, China
文摘To study the mechanism of unsteady heat-moisture transfer of wet surrounding rock in deep mining, a series of experiments with different initial and boundary conditions were carried out. Test results show that rock temperature decreases quickly at the initial stage, and reduces slowly to be a constant value finally for transient heat-moisture transfer. The quasi-steady surface temperature of wet airway is lower than that of dry airway due to the moisture transfer. The diffusion radius is less than the cooling radius owing to the large diffusion resistance. The outlet airflow enthalpy of wet airway is much larger than that of dry airway. Latent heat caused by the moisture transfer plays a significant role in a deep thermal environment. For periodic heat-moisture transfer, temperature, humidity and enthalpy of outlet airflow and rock temperature also change periodically. The wave amplitude of rock temperature decreases gradually with increasing distance away from the airway surface, and the wave phase of rock temperature is also behind that of airflow. Moreover, direction of the heat-moisture transfer between airway and airflow is bidirectional, which is different from results of transient transfer.
基金Supported by the National Natural Science Foundation of China (51075001) the Nature Science Research Project of Anhui Province (KJ2009A020)
文摘Operating principle of water three-way valve with high flow for individual hydraulic prop in coal was presented in this paper, its strict and precise mathematical model was established, its flow field was simulated numerically by software Fluent, and its dynamic characteristics were analyzed during the work process such as raising leg, loading and overflow, the influence of the related parameters on high-flow water three-way valve was determined. The results as follows: during the raising leg stage and early raising leg stage, when the damping ratio increases, the overshoot of system decreases and the setting time reduces, and the dynamic response performance has a significant improvement. During the loading stage and the overflow stage, the pressure in plunger chamber of single hydraulic prop, the output flow and the displacement of the high-flow water three-way valve decrease with the decreasing of the external load. The spring stiffness of the safety valve directs the flow and the spool's displacement of the safety valve, and it can be used to control the high-flow three-way valve's sensitivity.
文摘Flows through an open cross-flow-type nano-hydraulic turbine are numerically simulated to investigate the effects of the clearance Hc between the rotor and the ground on the turbine performance. A two-dimensional particle method is employed, which was successfully used for flow simulations of impulse-type and open cross-flow-type nano-hydraulic turbines in the authors' previous works. When the clearance Hc is smaller than a critical value, the simulated turbine performance decreases with decreasing Hc, in good agreement with the experiment. The simulations make it clear that such a reduction of turbine performance is attributable to an increase in the circumferential component of the water velocity at the rotor outlet. The simulations also demonstrate that the effect of the tip speed ratio of the rotor on the relation between Hc and turbine performance can be analyzed.
基金supported by the National Natural Science Foundation of China(Grant No.51276122)
文摘This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle(ORC).The variation and tendency of the net power output with water temperature and correlated with the critical temperature of working fluids is investigated.Four characteristic curves of the net power output at particular water temperature(Tw_turn,Tw_app,Tw_tran and Tw_up)and their temperature difference(△T_turn=Tw_turn△Tcr,△T_app=Tw_app△Tcr)are obtained to evaluate the working fluids.The curve at"applicable water temperature(Tw_app)"is a demarcation to differentiate the net power output from low to high.The"upper water temperature(Tw_up)"is an upper limit of the water temperature to yield the higher net power output.A relation is built that the suitable water temperature is within the Tw_app and Tw_up of the working fluid.
基金supported by the National Natural Science Foundation of China(Grant No.41571216)the Chinese National Key Technology R&D Program(Grant No.2012BAC17B01)
文摘As a common pollutant of nitrogen in groundwater, nitrate contamination has become a major concern worldwide. Baseflow, one of the dominant hydrological pathways for nitrate migration to streamflow, has been confirmed as a leading nitrate source for stream water where groundwater or subsurface flow contaminated heavily by nitrate. That is, sufficient improvements of water quality may not be attained without proper management for baseflow, even if non-point sources(NPS) pollutants discharged through surface runoff are being well managed. This article reviews the primary nitrate sources, the main factors affecting its transport, and the methodologies for baseflow nitrate estimation, to give some recommendations for future works, including:(1) giving sufficient consideration for the effects of climatological, morphological, and geological factors on baseflow recessions to obtain more reliable and accurate baseflow separation;(2) trying to solve calibration and validation problems for baseflow loads determining in storm flow period;(3) developing a simple and convenient algorithm with certain physics that can be used to separate baseflow NPS pollution from the total directly in different regions, for a reliable estimation of baseflow NPS pollution at larger scale(e.g., national scale);(4) improving groundwater quality simulation module of existing NPS pollution models to have a better simulation for biogeochemical processes in shallow aquifers;(5) taking integrated measures of "source control", "process interception" and "end remediation" to prevent and control NPS nitrate pollution effectively, not just only the strict control of nutrients loss from surface runoff.