By combining the photochemical reaction and liquid–liquid extraction(PODS), we studied desulfurization of model fuel and FCC gasoline. The effects of air flow, illumination time, extractants, volume ratios of extract...By combining the photochemical reaction and liquid–liquid extraction(PODS), we studied desulfurization of model fuel and FCC gasoline. The effects of air flow, illumination time, extractants, volume ratios of extractant/fuel, and catalyst amounts on the desulfurization process of PODS were analyzed in detail. Under the conditions with the air as oxidant(150 ml·min^(-1)), the mixture of DMF–water as extractant(the volume ratio of extractant/oil of 0.5) and photo-irradiation time of 2 h, the sulfur removal rate reached only 42.63% and 39.54% for the model and FCC gasoline, respectively. Under the same conditions, the sulfur removal rate increased significantly up to79% for gasoline in the presence of Cu_2O catalyst(2 g·L^(-1)). The results suggest that the PODS combined with a Cu_2O catalyst seems to be a promising alternative for sulfur removal of gasoline.展开更多
Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The p...Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The performance in these systems is dependent on catalyst properties and reactivity for a given light source, in conjunc-tion with the coupled transport of reactants within the media and photons falling incident to the catalyst surface. Experimental and computational analyses of local mass transfer and radiation pattems for a broad range of corrugation angles, depths, and non-idealities introduced during manufacture (i.e. fold curvature) are thus integrated to the design and optimization of these systems. This work explores techniques for determining incident energy distribu-tions on the surface of corrugated reactor geometries with non-ideal cross-sectional profiles, and the local and overall mass transfer rates obtained using computational fluid dynamics and experimental analysis. By examining the reaction kinetics for the photo-degradation of 4-chlorophenol over a TiO2 catalyst, the effects of surface area, energy incidence with photon recapture, and local mass transfer on overall reactor performance are presented to highlight ootimization concerns for these tvoes of reactors.展开更多
Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hy...Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.展开更多
Continuous flow has recently emerged as a powerful enabling technology that greatly improves many reactions' efficiency. Here, we apply the technology to intermolecular [4+2] annulation of cyclobutylanilines with ...Continuous flow has recently emerged as a powerful enabling technology that greatly improves many reactions' efficiency. Here, we apply the technology to intermolecular [4+2] annulation of cyclobutylanilines with alkenes, alkynes, and diynes by photoredox catalysis. An across-the-board improvement in the annulation's efficiency is noticed. Moreover, a gram-scale annulation is successfully demonstrated in continuous flow using a much lower catalyst loading.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.21766039)the Natural Science Foundation of Shaanxi Province(Grant No.14JS111)+1 种基金the Major Project of Yan'an Science and Technology Bureau(Grant No.2016CGZH-10)the Project of Yan'an University(YDT2017-2)
文摘By combining the photochemical reaction and liquid–liquid extraction(PODS), we studied desulfurization of model fuel and FCC gasoline. The effects of air flow, illumination time, extractants, volume ratios of extractant/fuel, and catalyst amounts on the desulfurization process of PODS were analyzed in detail. Under the conditions with the air as oxidant(150 ml·min^(-1)), the mixture of DMF–water as extractant(the volume ratio of extractant/oil of 0.5) and photo-irradiation time of 2 h, the sulfur removal rate reached only 42.63% and 39.54% for the model and FCC gasoline, respectively. Under the same conditions, the sulfur removal rate increased significantly up to79% for gasoline in the presence of Cu_2O catalyst(2 g·L^(-1)). The results suggest that the PODS combined with a Cu_2O catalyst seems to be a promising alternative for sulfur removal of gasoline.
文摘Corrugated reactors are known for their use in applications requiring UV-exposure, whereby media flowing within the corrugated channel react with a photo-active catalyst impregnated on the surface (i.e. TiO2). The performance in these systems is dependent on catalyst properties and reactivity for a given light source, in conjunc-tion with the coupled transport of reactants within the media and photons falling incident to the catalyst surface. Experimental and computational analyses of local mass transfer and radiation pattems for a broad range of corrugation angles, depths, and non-idealities introduced during manufacture (i.e. fold curvature) are thus integrated to the design and optimization of these systems. This work explores techniques for determining incident energy distribu-tions on the surface of corrugated reactor geometries with non-ideal cross-sectional profiles, and the local and overall mass transfer rates obtained using computational fluid dynamics and experimental analysis. By examining the reaction kinetics for the photo-degradation of 4-chlorophenol over a TiO2 catalyst, the effects of surface area, energy incidence with photon recapture, and local mass transfer on overall reactor performance are presented to highlight ootimization concerns for these tvoes of reactors.
基金Supported by the Doctoral Foundation of China (20050251006)
文摘Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.
基金supported by the University of Arkansasthe Arkansas Bioscience Institute+1 种基金the National Institutes of Health(P30 GM103450)from the National Institute of General Medical Sciencesthe NSF Career Award(CHE-1255539)
文摘Continuous flow has recently emerged as a powerful enabling technology that greatly improves many reactions' efficiency. Here, we apply the technology to intermolecular [4+2] annulation of cyclobutylanilines with alkenes, alkynes, and diynes by photoredox catalysis. An across-the-board improvement in the annulation's efficiency is noticed. Moreover, a gram-scale annulation is successfully demonstrated in continuous flow using a much lower catalyst loading.