According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ...According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.展开更多
In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow ra...In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.展开更多
This paper proposes a numerical method for the study of ventilation efficiency in buildings. The developed model is validated with the experimental results of Nielsen who tested the isothermal flow in a scaled model o...This paper proposes a numerical method for the study of ventilation efficiency in buildings. The developed model is validated with the experimental results of Nielsen who tested the isothermal flow in a scaled model of a ventilated room. A zonal method is used to predict airflow patterns in the same ventilated room. The different equations governing the flow in the room were coded in Matlab for different operating conditions, different zonal configurations of the room and different number of cells (control volumes). The efficiency of the ventilation was determined by calculating the number of ACH (air changes per hour) for each cell. The present results show the importance of the inlet air flow rate, the space resolution and the jet inlet dimensions on the determination of air quality.展开更多
基金Project(U1134203)supported by the National Natural Science Foundation of China
文摘According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.
基金Supported by the State Key Development Program for Basic Research of China(2015CB251402)the National Natural Science Foundation of China(21325628,91334108)the Mole-8.5 Supercomputing System developed by Institute of Process Engineering,Chinese Academy of Sciences
文摘In this study, the flow stability of the flat-bottomed hopper was investigated via GPU-based discrete element method(DEM) simulation. With the material height inside the hopper reducing, the fluctuation of the flow rate indicates an unstable discharge. The flow regions of the unstable discharge were compared with that of the stable discharge, a key transformation zone, where the voidage showed the largest difference between unstable and stable discharge, was revealed. To identify the relevance of the key transformation zone and the hopper flow stability, the voidage variation of the key transformation zone with material height reducing was studied.A sharp increase in the voidage in the key transformation zone was considered to be the standard for judging the unstable hopper flow, and the ‘Top–Bottom effect' of the hopper was defined, which indicated the hopper flow was unstable when the hopper only had the top area and the bottom area, because the voidage of particles in the top area and the bottom area were both variables.
文摘This paper proposes a numerical method for the study of ventilation efficiency in buildings. The developed model is validated with the experimental results of Nielsen who tested the isothermal flow in a scaled model of a ventilated room. A zonal method is used to predict airflow patterns in the same ventilated room. The different equations governing the flow in the room were coded in Matlab for different operating conditions, different zonal configurations of the room and different number of cells (control volumes). The efficiency of the ventilation was determined by calculating the number of ACH (air changes per hour) for each cell. The present results show the importance of the inlet air flow rate, the space resolution and the jet inlet dimensions on the determination of air quality.