Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidit...Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters. From the experiments, the greatest sediment concentration and flow depth were observed in the debris flows mixed with fine sediment indicating increased flow resistance. The experimental friction coefficient was then compared with the theoretical friction coefficient derived by substituting the experimental values into the constitutive equations for debris flow. The theoretical friction coefficient was obtained from two models with different fine-sediment treatments: assuming that all of the fine sediments were solid particles or that the particles consisted of a fluid phase involving pore water liquefaction. From the comparison of the friction coefficients, a fully liquefaction state was detected for the fine particle mixture. When the mixing ratio and particle size of the fine sediment were different, some other eases were considered to be in a partially liquefied transition state. These results imply that the liquefaction of fine sediment in debris flows was induced not only by the geometric conditions such as particle sizes, but also by the flow conditions.展开更多
Simulation of the flow and deposition from a laboratory turbidity current, in which dense mixtures of sediment move down a narrow, sloping channel and flow into a large tank. SSIIM CFD software is used to model 3-D fl...Simulation of the flow and deposition from a laboratory turbidity current, in which dense mixtures of sediment move down a narrow, sloping channel and flow into a large tank. SSIIM CFD software is used to model 3-D flow and deposition. SSIIM predicts the height of the accumulated mound to within 25% of experimental values, and the volume of the mound to 20%-50%, depending on the concentration of sediment and slope of the channel. The SSIIM predictions were consistently lower than experimental values. In simulations with initial sediment volumetric concentrations greater than 14%, SSIIM dumped some of the sediment load at the entry gate into the channel, which was not the case with the experimental runs. This is likely due to the fact that the fall velocity of sediment particles in SSIIM does not vary with sediment concentration. Further simulations of deposition from turbidity currents should be attempted when more complete experimental results are available, but it appears for now that SSIIM can be used to give approximate estimates of turbidity current deposition.展开更多
A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative ...A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative motions. Two-phase flow with complex deformations at the interface was simulated using a fractional step-volume of fluid algorithm. In addition, body motions were captured by an overlapping mesh system. Here, flow variables are transferred using a simple fully implicit non-conservative interpolation scheme which maintains the second-order accuracy of implemented spatial discretisation. Code was developed and an appropriate set of problems investigated. Results show good potential for development of a virtual hydrodynamics laboratory.展开更多
Does the native tongue confer greater authenticity and connection? And how does this connect with languages acquired later in life? From thirty years of directing, training, and auditioning actors from a range of et...Does the native tongue confer greater authenticity and connection? And how does this connect with languages acquired later in life? From thirty years of directing, training, and auditioning actors from a range of ethnicities, I have believed that the mother-tongue has a particular and organic connection for an actor, one difficult to achieve in any other language. This belief was confounded in a laboratory conducted with Romanian actors, March 2013. The work was performed in both English and Romanian and it was with a sense of shock that I observed that the work was more vital, compelling, and physically and vocally engaged when they spoke in English. What were the factors at play here and what are the implications for future work? Patsy Rodenburghas written of the giddy delight children find in language. Under what conditions does the native tongue evoke that "giddy delight" and where and when does it become an obstacle to such pleasure?展开更多
The flow over broad-crested weirs was simulated by computational fluid dynamic model. The water surface profile over broad crested weir was measured in a laboratory model and validated using two and three dimensional ...The flow over broad-crested weirs was simulated by computational fluid dynamic model. The water surface profile over broad crested weir was measured in a laboratory model and validated using two and three dimensional Fluent programs. The Reynolds Averaged Navier-Stokes equations coupled with the turbulent standard (k-ε) model and volume of fluid method were applied to estimate the water surface profile. The results of numerical model were compared with experimental results to evaluate the ability of model in describing the behaviour of water surface profile over the weir. The results indicated that the 3D required more time in comparison with 2D results and the flow over weir changed from subcritical flow at the upstream (U/S) face of weir to critical flow over the crest and to supercritical flow at downstream (D/S). A reasonable agreement was noticed between numerical results and experimental observations with mean error less than 2 %.展开更多
The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has...The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.展开更多
A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at whi...A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.展开更多
The low NOx emission technology has become an important feature of advanced aviation engine.A wide range of applications attempt to take advantage of the fact that staged combustion under lean-premixed-prevaporized(LP...The low NOx emission technology has become an important feature of advanced aviation engine.A wide range of applications attempt to take advantage of the fact that staged combustion under lean-premixed-prevaporized(LPP)conditions can significantly cut down emission and improve combustion efficiency.This paper proposes a scheme with fuel centrally staged and multi-point injection.The mixing of fuel and air is improved,and the flame temperature is relative low in combustion zone,minimizing the formation of nitrogen oxides(NOx),especially thermal NOx.In terms of the field distribution of equivalence ratio and temperature obtained from Computational Fluid Dynamics(CFD),a chemical reactor network(CRN),including several different ideal reactor,namely perfectly stirred reactor(PSR)and plug flow reactor(PFR),is constructed to simulate the combustion process and predict pollution emission.The influences of the pilot equivalence ratio and percentage of pilot/main fuel on NOx and carbon monoxide(CO)emission were investigated by CRN model.The effects of the pilot fuel and primary fuel on pollution emission were investigated experimentally.Finally,the effects of pilot equivalence ratio and pilot fuel proportion on NOx emission were discussed in detail by comparing predict of CRN and experimental results.展开更多
基金supported by Grant-in-Aid for Scientific Research (Grant No.22780140,2010),from the Ministry of Education,Science,Sports,and Culture,of Japan
文摘Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters. From the experiments, the greatest sediment concentration and flow depth were observed in the debris flows mixed with fine sediment indicating increased flow resistance. The experimental friction coefficient was then compared with the theoretical friction coefficient derived by substituting the experimental values into the constitutive equations for debris flow. The theoretical friction coefficient was obtained from two models with different fine-sediment treatments: assuming that all of the fine sediments were solid particles or that the particles consisted of a fluid phase involving pore water liquefaction. From the comparison of the friction coefficients, a fully liquefaction state was detected for the fine particle mixture. When the mixing ratio and particle size of the fine sediment were different, some other eases were considered to be in a partially liquefied transition state. These results imply that the liquefaction of fine sediment in debris flows was induced not only by the geometric conditions such as particle sizes, but also by the flow conditions.
文摘Simulation of the flow and deposition from a laboratory turbidity current, in which dense mixtures of sediment move down a narrow, sloping channel and flow into a large tank. SSIIM CFD software is used to model 3-D flow and deposition. SSIIM predicts the height of the accumulated mound to within 25% of experimental values, and the volume of the mound to 20%-50%, depending on the concentration of sediment and slope of the channel. The SSIIM predictions were consistently lower than experimental values. In simulations with initial sediment volumetric concentrations greater than 14%, SSIIM dumped some of the sediment load at the entry gate into the channel, which was not the case with the experimental runs. This is likely due to the fact that the fall velocity of sediment particles in SSIIM does not vary with sediment concentration. Further simulations of deposition from turbidity currents should be attempted when more complete experimental results are available, but it appears for now that SSIIM can be used to give approximate estimates of turbidity current deposition.
文摘A finite volume algorithm was established in order to investigate two-dimensional hydrodynamic problems. These include viscous free surface flow interaction with free rigid bodies in the case of large and/or relative motions. Two-phase flow with complex deformations at the interface was simulated using a fractional step-volume of fluid algorithm. In addition, body motions were captured by an overlapping mesh system. Here, flow variables are transferred using a simple fully implicit non-conservative interpolation scheme which maintains the second-order accuracy of implemented spatial discretisation. Code was developed and an appropriate set of problems investigated. Results show good potential for development of a virtual hydrodynamics laboratory.
文摘Does the native tongue confer greater authenticity and connection? And how does this connect with languages acquired later in life? From thirty years of directing, training, and auditioning actors from a range of ethnicities, I have believed that the mother-tongue has a particular and organic connection for an actor, one difficult to achieve in any other language. This belief was confounded in a laboratory conducted with Romanian actors, March 2013. The work was performed in both English and Romanian and it was with a sense of shock that I observed that the work was more vital, compelling, and physically and vocally engaged when they spoke in English. What were the factors at play here and what are the implications for future work? Patsy Rodenburghas written of the giddy delight children find in language. Under what conditions does the native tongue evoke that "giddy delight" and where and when does it become an obstacle to such pleasure?
文摘The flow over broad-crested weirs was simulated by computational fluid dynamic model. The water surface profile over broad crested weir was measured in a laboratory model and validated using two and three dimensional Fluent programs. The Reynolds Averaged Navier-Stokes equations coupled with the turbulent standard (k-ε) model and volume of fluid method were applied to estimate the water surface profile. The results of numerical model were compared with experimental results to evaluate the ability of model in describing the behaviour of water surface profile over the weir. The results indicated that the 3D required more time in comparison with 2D results and the flow over weir changed from subcritical flow at the upstream (U/S) face of weir to critical flow over the crest and to supercritical flow at downstream (D/S). A reasonable agreement was noticed between numerical results and experimental observations with mean error less than 2 %.
基金supported by the National Science Funds for Distinguished Young Scholar of China (Grant No. 51125017)the National Basic Research Program of China (Grant Nos. 2010CB226804,2011CB201201)+2 种基金the National Natural Science Foundation of China (Grant No. 50974125)the International Cooperation Project of Ministry of Science & Technology of China (Grant No. 2012DFA60760-2)NSFC International Cooperation and Exchange Program (Grant No. 51120145001)
文摘The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.
基金grateful to the Max Planck Society for continuous support to our research.financial support from ANR(contract TEC 2),the Alexander von Humboldt Foundation,and the PSMN at the Ecole Normale Sup′erieure de Lyon
文摘A turbulent flow is maintained by an external supply of kinetic gradients. The scale at which energy is supplied greatly differs energy, which is eventually dissipated into heat at steep velocity from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for single- particle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the "arrow of time". Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.
基金supported by the National Natural Science Foundation of China(Grant No.51306182)
文摘The low NOx emission technology has become an important feature of advanced aviation engine.A wide range of applications attempt to take advantage of the fact that staged combustion under lean-premixed-prevaporized(LPP)conditions can significantly cut down emission and improve combustion efficiency.This paper proposes a scheme with fuel centrally staged and multi-point injection.The mixing of fuel and air is improved,and the flame temperature is relative low in combustion zone,minimizing the formation of nitrogen oxides(NOx),especially thermal NOx.In terms of the field distribution of equivalence ratio and temperature obtained from Computational Fluid Dynamics(CFD),a chemical reactor network(CRN),including several different ideal reactor,namely perfectly stirred reactor(PSR)and plug flow reactor(PFR),is constructed to simulate the combustion process and predict pollution emission.The influences of the pilot equivalence ratio and percentage of pilot/main fuel on NOx and carbon monoxide(CO)emission were investigated by CRN model.The effects of the pilot fuel and primary fuel on pollution emission were investigated experimentally.Finally,the effects of pilot equivalence ratio and pilot fuel proportion on NOx emission were discussed in detail by comparing predict of CRN and experimental results.