The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during t...The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during the reverse flow mode. Three suction gap configurations were examined: (1) an axisymmetrical cylinder, (2) a cuboid whose bottom plane had no half-circle groove and was level with the diffuser entrance lower border, and (3) a cuboid with a half-circle groove on the bottom plane. Among them, the second one resulted in the highest RFD pumping capacity. The effect of receiver presence before the diffuser was also examined. RFD pumping efficiency was found to be enhanced in the presence of a receiver before the diffuser when the suction gap length is small and the jet outlet velocity at the nozzle exit is high enough. Based on experimental data, a dimensionless performance curve of the suction factor q versus the ratio of Euler numbers in sections out-out and 0-0 Eu out /Eu 0 was derived. This curve is insensitive to suction gap configurations.展开更多
Two-flux method can be used, as a simplification for the radiative heat transfer, to predict heat flux in a slab consisting of gas and particles. In the original two-flux method (Schuster, 1905 and Schwarzschild, 1906...Two-flux method can be used, as a simplification for the radiative heat transfer, to predict heat flux in a slab consisting of gas and particles. In the original two-flux method (Schuster, 1905 and Schwarzschild, 1906), the radiation field was assumed to be isotropic. But for gas-particles mixture in combustion environments, the scatterings of particles are usually anisotropic, and the original two-flux method gives critical errors when ignoring this anisotropy. In the present paper, a multilayer four-flux model developed by Rozé et al. (2001) is extended to calculate the radiation heat flux in a slab containing participating particles and gas mixture. The analytic resolution of the radiative transfer equation in the framework of a two-flux approach is presented. The average crossing parameter ε and the forward scattering ratio ζ are defined to describe the anisotropy of the radiative field. To validate the model, the radiation transfer in a slab has been computed. Comparisons with the exact analytical result of Modest (1993) and the original two-flux model show the exactness and the improvement. The emissivity of a slab containing flyash/CO2/H2O mixture is obtained using the new model. The result is identical with that of Goodwin (1989).展开更多
文摘The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during the reverse flow mode. Three suction gap configurations were examined: (1) an axisymmetrical cylinder, (2) a cuboid whose bottom plane had no half-circle groove and was level with the diffuser entrance lower border, and (3) a cuboid with a half-circle groove on the bottom plane. Among them, the second one resulted in the highest RFD pumping capacity. The effect of receiver presence before the diffuser was also examined. RFD pumping efficiency was found to be enhanced in the presence of a receiver before the diffuser when the suction gap length is small and the jet outlet velocity at the nozzle exit is high enough. Based on experimental data, a dimensionless performance curve of the suction factor q versus the ratio of Euler numbers in sections out-out and 0-0 Eu out /Eu 0 was derived. This curve is insensitive to suction gap configurations.
基金the sponsorship by le Ministère de la Recherche de France the Programme Sino-Francais de Recherches Avancées (PRA E01-06: Combustion propre : aspects numériques et expérimentaux) the National Natural Science Foundation of China (Grant No.N50106015).
文摘Two-flux method can be used, as a simplification for the radiative heat transfer, to predict heat flux in a slab consisting of gas and particles. In the original two-flux method (Schuster, 1905 and Schwarzschild, 1906), the radiation field was assumed to be isotropic. But for gas-particles mixture in combustion environments, the scatterings of particles are usually anisotropic, and the original two-flux method gives critical errors when ignoring this anisotropy. In the present paper, a multilayer four-flux model developed by Rozé et al. (2001) is extended to calculate the radiation heat flux in a slab containing participating particles and gas mixture. The analytic resolution of the radiative transfer equation in the framework of a two-flux approach is presented. The average crossing parameter ε and the forward scattering ratio ζ are defined to describe the anisotropy of the radiative field. To validate the model, the radiation transfer in a slab has been computed. Comparisons with the exact analytical result of Modest (1993) and the original two-flux model show the exactness and the improvement. The emissivity of a slab containing flyash/CO2/H2O mixture is obtained using the new model. The result is identical with that of Goodwin (1989).