In many gasliquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gasliquid flow pattern. Bubble formation models for variant gasliquid flow pat t...In many gasliquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gasliquid flow pattern. Bubble formation models for variant gasliquid flow pat terns have been developed based on force balance. The effects of the orientation of gasliquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient airwater system, thesultable gasllquid flow pattern is important to obtain smaller bubbles under the low velocity liquid crossflow con ditions with stainless steel spargers. Among the four types of gasliquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found tobe insgnifican whenliq.uid velocity is.higher than. 3.2 m;sa or theorifice diameter is small enough.展开更多
By electrical resistance tomography (ERT) the cross sectional profiles of gas hold-up in a φ56mm bubble column are obtained with four designs of gas sparger. The effect of sparger geometry on the bubble distribution ...By electrical resistance tomography (ERT) the cross sectional profiles of gas hold-up in a φ56mm bubble column are obtained with four designs of gas sparger. The effect of sparger geometry on the bubble distribution is re-vealed by applying a sensitivity conjugated gradients reconstruction method (SCG). Experimental results show that over-all hold-up obtained by ERT is generally in good agreement with those measured with the pressure transducer and the ERT system produces informative evidence that the radial profiles of hold-up is very similar to the sparger design in the lower section of bubble column. Meanwhile, the rise velocity of bubble swarm and the Sauter mean bubble size are evaluated using ERT based on dynamic gas disengagement theory. The experimental results are in good agreement with correlations and conventional estimation obtained using pressure transmitter methods.展开更多
Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronauti...Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.展开更多
A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible flu...A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.展开更多
Bubbly gas-liquid Taylor-Couette vortex flow has been the subject of several recent investigations both because of interest in bubble-induced drag reduction and because such devices have potential applications to a va...Bubbly gas-liquid Taylor-Couette vortex flow has been the subject of several recent investigations both because of interest in bubble-induced drag reduction and because such devices have potential applications to a variety of chemical and biochemical processing problems. In order to quantitatively describe the hydrodynamics of highly turbulent two phase Taylor-Couette flow, a rigorous two-fluid computational fluid dynamics (CFD) model was developed and compared with previously published experimental data. This model includes a comprehensive description of the constitutive closure for inter-phase forces and turbulence was simulated using both the k- and k-to models. In addition, the mechanism by which the dispersed fluid attains a non-uniform radial and axial distribution is analyzed and the relative importance of various interphase forces is discussed. Lastly the model was validated by comparison of simulation predictions with experimental data, and it is shown that the CFD model correctly predicts phase velocity, velocity fluctuation, and gas distribution, and may provide guidance for reactor design and scale-up.展开更多
In this work, a numerical study for designing a new kind of MHD (Magneto-Hydrn-Dynamic) pumps is presented. This technique makes a compromise between electrolysis prevention and high flow rate performance. This tech...In this work, a numerical study for designing a new kind of MHD (Magneto-Hydrn-Dynamic) pumps is presented. This technique makes a compromise between electrolysis prevention and high flow rate performance. This technique should eliminate electrolytic bubble generation, electrodes wear and fluid propriety modification. All these side phenomena are prevented by considering isolated electrodes. The numerical presented results in this paper demonstrate that continuous MHD pumping is possible with isolated electrodes. The MHD excitation combines a high frequency altering current with a low frequency altering magnetic field. In order to validate our results, two independent theoretical methods for computing flow rate are followed. The two presented independent approaches show that high flow rate is possible even with isolated electrodes. To overcome the problem of dimensioning this kind of pumps, a generic numerical analysis is proposed. Hence, the pump performances as functions of the external parameter are studied and tools to calculate for a given fluid and the optimal high frequency regime are provided.展开更多
The chaotic characteristics of bubbles rising with accompanying coalescences in pseudoplastic aqueous carboxymethylcellulose sodium(CMC)solution were studied by means of smoothed pseudo Wigner-Ville distribution and W...The chaotic characteristics of bubbles rising with accompanying coalescences in pseudoplastic aqueous carboxymethylcellulose sodium(CMC)solution were studied by means of smoothed pseudo Wigner-Ville distribution and Wigner-Hough distribution.The temporal signal of bubble passage was measured utilizing a photoconductive data acquisition system.As bubble coalescence occurred,the smoothed pseudo Wigner-Ville distribution of the signal revealed that the signal could be divided into low-frequency and high-frequency ranges and the transition range according to the distribution feature of frequency domain,which reflected eddy motion of fluid,high frequency fluctuations of fluid velocity and other random components measured in the signal,and bubbles rising accompanied with coalescences,respectively.However,bubble coalescence occurred in the lower position and the frequency range of bubbles motion became wide under higher gas flowrate,while the frequency range of bubbles motion became narrow when the CMC concentration increased.The typical dynamics of bubbles motion,such as periodicity,bifurcation and chaos,could be easily found in terms of the Wigner-Hough distribution.展开更多
基金Supported by the National Natural Science Foundation of China (20736009).
文摘In many gasliquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gasliquid flow pattern. Bubble formation models for variant gasliquid flow pat terns have been developed based on force balance. The effects of the orientation of gasliquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient airwater system, thesultable gasllquid flow pattern is important to obtain smaller bubbles under the low velocity liquid crossflow con ditions with stainless steel spargers. Among the four types of gasliquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found tobe insgnifican whenliq.uid velocity is.higher than. 3.2 m;sa or theorifice diameter is small enough.
文摘By electrical resistance tomography (ERT) the cross sectional profiles of gas hold-up in a φ56mm bubble column are obtained with four designs of gas sparger. The effect of sparger geometry on the bubble distribution is re-vealed by applying a sensitivity conjugated gradients reconstruction method (SCG). Experimental results show that over-all hold-up obtained by ERT is generally in good agreement with those measured with the pressure transducer and the ERT system produces informative evidence that the radial profiles of hold-up is very similar to the sparger design in the lower section of bubble column. Meanwhile, the rise velocity of bubble swarm and the Sauter mean bubble size are evaluated using ERT based on dynamic gas disengagement theory. The experimental results are in good agreement with correlations and conventional estimation obtained using pressure transmitter methods.
基金Supported by the Key Projects of National Natural Science Foundation of China (50736006 9587003-13) the State Key Development Program for Basic Research of China (G1999-0222-08) the National Pandeng Project of China (85-06-1-2)
文摘Dispersed multiphase flows,including gas-particle(gas-solid),gas-spray,liquid-particle(liquid-solid) ,liquid-bubble,and bubble-liquid-particle flows,are widely encountered in power,chemical and metallurgical,aeronautical and astronautical,transportation,hydraulic and nuclear engineering. In this paper,advances and re-search needs in fundamental studies of dispersed multiphase flows,including the particle/droplet/bubble dynamics,particle-particle,droplet-droplet and bubble-bubble interactions,gas-particle and bubble-liquid turbulence interac-tions,particle-wall interaction,numerical simulation of dispersed multiphase flows,including Reynolds-averaged modeling(RANS modeling),large-eddy simulation(LES) and direct numerical simulation(DNS) are reviewed. The research results obtained by the present author are also included in this review.
基金the National Natural Science Foundation of China (No.50074035).
文摘A computational fluid dynamics (CFD) method is developed to investigate the radical motion of single cavitating bubble in the oscillating pressure field of a cavitating water jet. Regarding water as a compressible fluid, the simulation is performed at different oscillating frequencies. It is found that the bubble motion presents obvious nonlinear feature, and bifurcation and chaos appear on some conditions. The results manifest the indetermination of the cavitating bubble motion in the oscillating pressure field of the cavitating water jet.
基金Supported by the National Science Foundation(CBET-1236676)
文摘Bubbly gas-liquid Taylor-Couette vortex flow has been the subject of several recent investigations both because of interest in bubble-induced drag reduction and because such devices have potential applications to a variety of chemical and biochemical processing problems. In order to quantitatively describe the hydrodynamics of highly turbulent two phase Taylor-Couette flow, a rigorous two-fluid computational fluid dynamics (CFD) model was developed and compared with previously published experimental data. This model includes a comprehensive description of the constitutive closure for inter-phase forces and turbulence was simulated using both the k- and k-to models. In addition, the mechanism by which the dispersed fluid attains a non-uniform radial and axial distribution is analyzed and the relative importance of various interphase forces is discussed. Lastly the model was validated by comparison of simulation predictions with experimental data, and it is shown that the CFD model correctly predicts phase velocity, velocity fluctuation, and gas distribution, and may provide guidance for reactor design and scale-up.
文摘In this work, a numerical study for designing a new kind of MHD (Magneto-Hydrn-Dynamic) pumps is presented. This technique makes a compromise between electrolysis prevention and high flow rate performance. This technique should eliminate electrolytic bubble generation, electrodes wear and fluid propriety modification. All these side phenomena are prevented by considering isolated electrodes. The numerical presented results in this paper demonstrate that continuous MHD pumping is possible with isolated electrodes. The MHD excitation combines a high frequency altering current with a low frequency altering magnetic field. In order to validate our results, two independent theoretical methods for computing flow rate are followed. The two presented independent approaches show that high flow rate is possible even with isolated electrodes. To overcome the problem of dimensioning this kind of pumps, a generic numerical analysis is proposed. Hence, the pump performances as functions of the external parameter are studied and tools to calculate for a given fluid and the optimal high frequency regime are provided.
基金Supported by the National Natural Science Foundation of China (20476073), the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B03) and the Program of Introducing Talents of Discipline to Universities (B06006).
文摘The chaotic characteristics of bubbles rising with accompanying coalescences in pseudoplastic aqueous carboxymethylcellulose sodium(CMC)solution were studied by means of smoothed pseudo Wigner-Ville distribution and Wigner-Hough distribution.The temporal signal of bubble passage was measured utilizing a photoconductive data acquisition system.As bubble coalescence occurred,the smoothed pseudo Wigner-Ville distribution of the signal revealed that the signal could be divided into low-frequency and high-frequency ranges and the transition range according to the distribution feature of frequency domain,which reflected eddy motion of fluid,high frequency fluctuations of fluid velocity and other random components measured in the signal,and bubbles rising accompanied with coalescences,respectively.However,bubble coalescence occurred in the lower position and the frequency range of bubbles motion became wide under higher gas flowrate,while the frequency range of bubbles motion became narrow when the CMC concentration increased.The typical dynamics of bubbles motion,such as periodicity,bifurcation and chaos,could be easily found in terms of the Wigner-Hough distribution.