在相对真空下以CaSi_(2)为还原剂进行预制球团提镁过程的研究。利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分别对还原渣的形貌、化学成分和物相进行分析。结果表明,小的氩气流量可以极大地提高氧化镁的还原率,在相对真空...在相对真空下以CaSi_(2)为还原剂进行预制球团提镁过程的研究。利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分别对还原渣的形貌、化学成分和物相进行分析。结果表明,小的氩气流量可以极大地提高氧化镁的还原率,在相对真空下以CaSi_(2)为还原剂的预制球团提镁过程可以用F_(1)模型解释,CaSi_(2)还原氧化镁为固液反应,此过程为化学反应控制,温度对还原率影响很大,表观活化能为108.99 k J/mol。还原渣的物相分析表明,渣中的MgO含量对Ca_(2)SiO_(4)的晶型转变有影响。展开更多
A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fie...A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1508217,51504058)the Fundamental Research Funds for the Central Universities of China(No.N162504003)。
文摘在相对真空下以CaSi_(2)为还原剂进行预制球团提镁过程的研究。利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)分别对还原渣的形貌、化学成分和物相进行分析。结果表明,小的氩气流量可以极大地提高氧化镁的还原率,在相对真空下以CaSi_(2)为还原剂的预制球团提镁过程可以用F_(1)模型解释,CaSi_(2)还原氧化镁为固液反应,此过程为化学反应控制,温度对还原率影响很大,表观活化能为108.99 k J/mol。还原渣的物相分析表明,渣中的MgO含量对Ca_(2)SiO_(4)的晶型转变有影响。
文摘A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.