In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
This paper reports an investigation of Computational Fluid Dynamics(CFD)on the influence of injection momentum rate of premixed air and fuel on the flameless Moderate or Intense Low oxygen Dilution(MILD) combustion in...This paper reports an investigation of Computational Fluid Dynamics(CFD)on the influence of injection momentum rate of premixed air and fuel on the flameless Moderate or Intense Low oxygen Dilution(MILD) combustion in a recuperative furnace.Details of the furnace flow velocity,temperature,O2,CO2 and NOx concentrations are provided.Results obtained suggest that the flue gas recirculation plays a vital role in establishing the premixed MILD combustion.It is also revealed that there is a critical momentum rate of the fuel-air mixture below which MILD combustion does not occur.Moreover,the momentum rate appears to have less significant influence on conventional global combustion than on MILD combustion.展开更多
The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature...The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature distributions inside the EGR cooler. Three different models of EGR cooler are investigated, among which model A is a traditional one, and models B and C are improved by adding a helical baffle in the cooling area. In models B and C the entry directions of cooling water are different, which mostly influences the flow resistance. The results show that the improved structures not only lengthen the flow path of the cooling water, but also enhance the heat exchange rate between the cool and hot media. In conclusion we suggest that the improved structures are more powerful than the traditional one.展开更多
The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a ther...The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.展开更多
Oceanic contribution to the poleward heat flux in the climate system includes two components: the sensible heat flux and the latent heat flux. Although the latent heat flux has been classified as atmospheric heat flux...Oceanic contribution to the poleward heat flux in the climate system includes two components: the sensible heat flux and the latent heat flux. Although the latent heat flux has been classified as atmospheric heat flux exclusively, it is argued that oceanic control over this component of poleward heat flux should play a critically important role. The so-called swamp ocean model practice is analyzed in detail, and the critical role of oceanic circulation in the establishment of the meridional moisture transport is emphasized.展开更多
This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra ti...This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra tion of A1203-water nanofluids. The results showed considerable enhancement of convective heat transfer using the nanofluids. The empirical correlations developed for Nusselt number in terms of Reynolds number, Prandtl number, viscosity ratio and volume concentration fit with the experimental data within ±10%. The heat transfer characteris tics were also simulated using computational fluid dynamics using FLUENT software with the standard ke model and multiple reference frame were adopted. The computational fluid dynamics (CFD) predicted Nusselt number agrees well with the experimental value and the discrepancy is found to be less than +8%.展开更多
The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with tempera...The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with temperature distribution were experimentally studied. Particle dynamics analyzer (PDA) was used for the on-line measurement of particle motion and particle concentration distribution in the cross-sections of the duct. The influences of the parameters such as the ratio of the bulk air temperature to the cold wall temperature and the air flow rate in the duct on the kinematical characteristics and the deposition efficiencies of PM2.5 were investigated. The experimental re- sults show that the deposition efficiencies of PM2.5 mainly depend on the temperature difference between the air and the cold wail, wffile the air flow rate and the particlecon^centration almost affect hardly tile clep0si-tion-effi ciency. The radial force thermophoresis to push PM2.5 to the cold wail is found the key factor for PM2.5 deposition.Based on the experimental results, an empirical modified Romay correlation for the calculation of thermophoretic deposition efficiency of PM2.5 is presenlext. The empirical correlation agrees reasonably well with the experimental data.展开更多
The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the...The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.展开更多
Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flo...Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.展开更多
Bottom temperature variation (BTV) is a serious problem in determining the thermal gra- dient and heat flow of the sediments in shallow seas. The water depth of the East China Sea shelf is mostly below 150m, and the h...Bottom temperature variation (BTV) is a serious problem in determining the thermal gra- dient and heat flow of the sediments in shallow seas. The water depth of the East China Sea shelf is mostly below 150m, and the heat flow measurement is strongly affected by BTV. Following a statistical algorithm, we rechecked the temperature and thermal conductivity data of the cruises KX90-1 and KX91-1, carried out by a cooperation program of China and Japan, and calculate the heat flow in a site without long-term temperature record. The calculated heat flow in the site was 58.6±3.6 mW/m2, being just within the range of the drill heat flow value of East China Sea shelf. The inversed amplitude spectrum of BTV has a peak in frequency of 1/10 per year, and the annual component is also an important part. Comparison with two lakes of Lake Greifensee and Lac Leman (i.e. Lake Geneva), which are in different water depth, revealed that with increasing water depth, the peak of amplitude spectrum moved towards low frequency components. The heat flow values calculated in this paper and from petroleum bore hole in East China Sea shelf are much more close to that in southeast China than in Okinawa Trough.展开更多
In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By vari...In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.展开更多
This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differenti...This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differential system is re-structured into the ordinary differential expressions by the implication of appropriate transformations.The developed differential equations are computed by homotopy analysis technique.Numerical consequences have been accomplished by various values of emerging parameters.Coefficients of skin friction and heat and mass transfer rates have been scrutinized.Irreversibility analysis is carried out.Influence of various prominent variables on entropy generation is presented.Moreover,the temperature increases for higher Dufour number and concentration distribution reduces against Soret number.Higher squeezing parameter enhances velocity while concentration reduces with an increment in squeezing parameter.Both entropy rate and Bejan number increase against higher diffusion parameter.展开更多
A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In...A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.展开更多
The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are conside...The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.展开更多
PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchanger...PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchangers over other types. In this article, a behavioral analysis of heat transfer in fiat plates of these heat exchangers in laminar flow situation through CFD (computational fluid dynamics) simulation using FLUENT 6.3.26 software is done. The study reveals results graphically based on fluid's behavior in co-current and counter current flows and discusses thermal indexes consisting of heat transfer coefficient, Nusslet and total heat flux in both conditions. Eventually, a comparison via the graphical results is presented between the two types of flow directions.展开更多
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
基金Supported by the National Natural Science Foundation of China(50936001)
文摘This paper reports an investigation of Computational Fluid Dynamics(CFD)on the influence of injection momentum rate of premixed air and fuel on the flameless Moderate or Intense Low oxygen Dilution(MILD) combustion in a recuperative furnace.Details of the furnace flow velocity,temperature,O2,CO2 and NOx concentrations are provided.Results obtained suggest that the flue gas recirculation plays a vital role in establishing the premixed MILD combustion.It is also revealed that there is a critical momentum rate of the fuel-air mixture below which MILD combustion does not occur.Moreover,the momentum rate appears to have less significant influence on conventional global combustion than on MILD combustion.
文摘The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature distributions inside the EGR cooler. Three different models of EGR cooler are investigated, among which model A is a traditional one, and models B and C are improved by adding a helical baffle in the cooling area. In models B and C the entry directions of cooling water are different, which mostly influences the flow resistance. The results show that the improved structures not only lengthen the flow path of the cooling water, but also enhance the heat exchange rate between the cool and hot media. In conclusion we suggest that the improved structures are more powerful than the traditional one.
文摘The phenomenon of direct-contact condensation,used in steam driven jet injectors,nuclear reactor emergency core cooling systems and direct-contact heat exchangers,was investigated computationally by introducing a thermal equilibrium model for direct-contact condensation of steam in subcooled water.The condensation model presented was a two resistance model which takes care of the heat transfer process on both sides of the interface and uses a variable steam bubble diameter.The injection of supersonic steam jet in subcooled water tank was simulated using the Euler-Euler multiphase flow model of Fluent 6.3 code with the condensation model incorporated. The findings of the computational fluid dynamics(CFD) simulations were compared with the published experimental data and fairly good agreement was observed between the two,thus validating the condensation model.The results of CFD simulations for dimensionless penetration length of steam plume varies from 2.73-7.33,while the condensation heat transfer coefficient varies from 0.75-0.917 MW·(m ^2 ·K)^ -1 for water temperature in the range of 293-343 K.
文摘Oceanic contribution to the poleward heat flux in the climate system includes two components: the sensible heat flux and the latent heat flux. Although the latent heat flux has been classified as atmospheric heat flux exclusively, it is argued that oceanic control over this component of poleward heat flux should play a critically important role. The so-called swamp ocean model practice is analyzed in detail, and the critical role of oceanic circulation in the establishment of the meridional moisture transport is emphasized.
文摘This paper presents the heat transfer characteristics of A1203-water nanofluid in a coiled agitated vessel with propeller agitator. The experimental study was conducted using 0.10%, 0.20% and 0.30% volume concentra tion of A1203-water nanofluids. The results showed considerable enhancement of convective heat transfer using the nanofluids. The empirical correlations developed for Nusselt number in terms of Reynolds number, Prandtl number, viscosity ratio and volume concentration fit with the experimental data within ±10%. The heat transfer characteris tics were also simulated using computational fluid dynamics using FLUENT software with the standard ke model and multiple reference frame were adopted. The computational fluid dynamics (CFD) predicted Nusselt number agrees well with the experimental value and the discrepancy is found to be less than +8%.
基金the Special Funds for Major State Basic Research Project of China (2002CB211604)
文摘The kinematical characteristics and thermophoretic deposition of inhalable particles with the diameters of 0-2.5μm (hereafter referred to as PM2.5) suspended in turbulent air flow in a rectangular duct with temperature distribution were experimentally studied. Particle dynamics analyzer (PDA) was used for the on-line measurement of particle motion and particle concentration distribution in the cross-sections of the duct. The influences of the parameters such as the ratio of the bulk air temperature to the cold wall temperature and the air flow rate in the duct on the kinematical characteristics and the deposition efficiencies of PM2.5 were investigated. The experimental re- sults show that the deposition efficiencies of PM2.5 mainly depend on the temperature difference between the air and the cold wail, wffile the air flow rate and the particlecon^centration almost affect hardly tile clep0si-tion-effi ciency. The radial force thermophoresis to push PM2.5 to the cold wail is found the key factor for PM2.5 deposition.Based on the experimental results, an empirical modified Romay correlation for the calculation of thermophoretic deposition efficiency of PM2.5 is presenlext. The empirical correlation agrees reasonably well with the experimental data.
文摘The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.
基金Project(50803008)supported by the National Natural Science Foundation of ChinaProjects(14JJ4035,2011RS4067)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2013-sdllmd-08)supported by the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology),ChinaProjects(20100480946,201104508)supported by the China Postdoctoral Science Foundation,China
文摘Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.
基金Supported by the National High Technology R&D Program of China (2004AA616060)
文摘Bottom temperature variation (BTV) is a serious problem in determining the thermal gra- dient and heat flow of the sediments in shallow seas. The water depth of the East China Sea shelf is mostly below 150m, and the heat flow measurement is strongly affected by BTV. Following a statistical algorithm, we rechecked the temperature and thermal conductivity data of the cruises KX90-1 and KX91-1, carried out by a cooperation program of China and Japan, and calculate the heat flow in a site without long-term temperature record. The calculated heat flow in the site was 58.6±3.6 mW/m2, being just within the range of the drill heat flow value of East China Sea shelf. The inversed amplitude spectrum of BTV has a peak in frequency of 1/10 per year, and the annual component is also an important part. Comparison with two lakes of Lake Greifensee and Lac Leman (i.e. Lake Geneva), which are in different water depth, revealed that with increasing water depth, the peak of amplitude spectrum moved towards low frequency components. The heat flow values calculated in this paper and from petroleum bore hole in East China Sea shelf are much more close to that in southeast China than in Okinawa Trough.
文摘In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.
文摘This exploration examines unsteady magnetohydrodynamic(MHD) three-dimensional flow of viscous material between rotating plates subject to radiation,Joule heating and chemical reaction.The non-linear partial differential system is re-structured into the ordinary differential expressions by the implication of appropriate transformations.The developed differential equations are computed by homotopy analysis technique.Numerical consequences have been accomplished by various values of emerging parameters.Coefficients of skin friction and heat and mass transfer rates have been scrutinized.Irreversibility analysis is carried out.Influence of various prominent variables on entropy generation is presented.Moreover,the temperature increases for higher Dufour number and concentration distribution reduces against Soret number.Higher squeezing parameter enhances velocity while concentration reduces with an increment in squeezing parameter.Both entropy rate and Bejan number increase against higher diffusion parameter.
文摘A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.
基金support from Higher Education Commission (HEC) of Pakistan through Ph.D Indigeous Scheme.
文摘The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic(MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.
文摘PHEs (plate heat exchangers) are among the most common thermal equipments in diverse industries particularly in oil and gas companies. This wide usage is obviously due to significant benefits of these heat exchangers over other types. In this article, a behavioral analysis of heat transfer in fiat plates of these heat exchangers in laminar flow situation through CFD (computational fluid dynamics) simulation using FLUENT 6.3.26 software is done. The study reveals results graphically based on fluid's behavior in co-current and counter current flows and discusses thermal indexes consisting of heat transfer coefficient, Nusslet and total heat flux in both conditions. Eventually, a comparison via the graphical results is presented between the two types of flow directions.