Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ...Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.展开更多
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr...A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.展开更多
The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that p...The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.展开更多
Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the e...Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the environment and of how services are formed by human activities. We compared lead’s anthropogenic and biogeochemical cycles and found that the services, pathways, and changes in form requiring the most attention. We traced lead through its life cycle and identified the changes in its functions, forms, and locations by examining technology and engineering information. Lead ore and scrap were the two main anthropogenic sources of lead. When lead provides human services, its main functions included the storage and delivery of electricity, anti-corrosion treatments, and radiation protection; the main forms of lead in these products were Pb, PbO2 and PbSO4, and the main location changed from lithosphere in central China to regions in eastern China.展开更多
Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in...Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in experimental and computational results.Actually,microorganisms transport a miscellaneous palette of ingredients in manufacturing industrial goods particularly in fertilizer industries.Heat transfer characteristics of molecular structure are measured by a physical phenomenon which is allied with the transpiration of heat within matter.Motivated by bioinspired fuel cells involved in near-surface flow phenomena,in the present article,we examine the transverse swimming of motile gyrotactic microorganisms numerically in a rheological Jeffery fluid near a stretching wall.The leading physical model is converted in a nonlinear system of ODEs through proper similarity alterations.A numerical technique called shooting method with R-K Fehlberg is applied via mathematical software and graphical presentations are obtained.The influence of all relative physical constraints on velocity,temperature,concentration,and volume fraction of gyrotactic microorganisms is expressed geometrically.It is found that heat and mass flux at the surface as well as density of motile microorganism’s declines for Brownian motion and thermophoresis parameter.Comparison in tabular form is made with existing literature to validate the results for limiting cases with convective boundary conditions.展开更多
AIM:To explore the impact of fecal incontinence (FI) on quality of life (QOL) of patients attending urogynecology and colorectal clinics (CCs).METHODS:Cross-sectional study of 154 patients (27 male) with FI,who attend...AIM:To explore the impact of fecal incontinence (FI) on quality of life (QOL) of patients attending urogynecology and colorectal clinics (CCs).METHODS:Cross-sectional study of 154 patients (27 male) with FI,who attended the clinics at a regional hospital in North Queensland,Australia in 2003 and 2004,and completed the Fecal Incontinence Quality of Life Scale (FIQL:1=very affected;4=not affected).RESULTS:More than 22% of patients had their QOL affected severely by FI.Patients reported that they had not previously been asked about FI by a medical practitioner nor did they voluntarily disclose its presence.The median FIQL scores for all participants were:lifestyle=3.24;coping=2.23;depression=2.42;and embarrassment=2.33.Increasing frequency of soiling had a negative effect on all four FIQL scales (P < 0.001) as did the quantity of soiling (P < 0.01).Female CC patients had poorer FIQL scores than urogynecology clinic patients for lifestyle (P=0.015),coping (P=0.004) and embarrassment (P=0.009),but not depression (P=0.062),despite having experienced FI for a shorter period.CONCLUSION:Failure to seek treatment for FI degrades the quality of patients' lives over time.FI assessment tools should incorporate the quantity of fecal loss.展开更多
Pereutaneous coronary intervention (PCI) for coronary bifurcation lesions has been associated with lower procedural success rates and worse clinical outcomes compared with PCI for simple coronary lesions. Angiograph...Pereutaneous coronary intervention (PCI) for coronary bifurcation lesions has been associated with lower procedural success rates and worse clinical outcomes compared with PCI for simple coronary lesions. Angiographic evaluation alone is sometimes inaccurate and does not reflect the fimctional significance of bifurcation lesions. The fractional flow reserve (FFR) is an easily obtainable, reliable, and reproducible physiologic parameter. This parameter is epicardial lesion specific and reflects both degree of stenosis and the myocardial territory supplied by the specific artery. Recent studies have shown that FFR-guided provisional side branch intervention strategy for bifurcation lesions is feasible and effective and can reduce unnecessary complex interventions and related complications. However, an adequate understanding of coronary physiology and the pitfalls of FFR is essential to properly use FFR for PCI of complex bifurcation lesions.展开更多
To improve the burial flux calculations of bioavailable phosphorus (P) and study opal-associated P (Opal-P) in the East China Sea (ECS), surface and core sediments were collected in the Changjiang Estuary (CE)...To improve the burial flux calculations of bioavailable phosphorus (P) and study opal-associated P (Opal-P) in the East China Sea (ECS), surface and core sediments were collected in the Changjiang Estuary (CE) and the south of the Cheju Island. In this study, sedimentary P was operationally divided into seven different forms using modified sedimentary extraction (SEDEX) technique: LSor-P (exchangeable or loosely sorbed P), Fe-P (easily reducible or reactive ferric Fe-bound P), CFA-P (authigenic carbonate fluorapatite and biogenic apatite and CaCO3-bound P), Detr-P (detrital apatite), Org-P (organic P), Opal-P and Ref-P (refractory P). The data revealed that the concentrations of the seven different P forms rank as Detr-P 〉 CFA-P 〉 Org-P 〉 Ref-P 〉 Opal-P 〉 Fe-P 〉 LSor-P in surface sediments and CFA-P 〉 Detr-P 〉 Org-P 〉 Ref-P 〉 Fe-P 〉 Opal-P 〉 LSor-P in core sediments. The distributions of the total phosphorus (TP), TIP, CFA-P, Detr-P are similar and decrease from the CE to the south of the Cheju Island. Meanwhile, Org-P and Opal-P exhibit different distribution trends; this may be affected by the grain size and TOM. The concentrations of potentially bioavailable P are 9.6-13.0 μmol g^-1 and 10.0-13.6 μmol g^-1, representing 61%-70% and 41%?64% of the TP in surface and core sediments, respectively. The concentrations of Opal-P are 0.6-2.3 μmol g^-1 and 0.6-1.4 μmol g^-1 in surface and core sediments, ac-counting for 5.3%?19.8% and 4.2%?10.6% of bioavailable P, respectively. The total burial fluxes of Opal-P and bioavailable P are 1.4×10^9 mol y^-1 and 1.1×10^10 mol yr^-1 in the ECS, respectively. Opal-P represents about 12.7% of potentially bioavailable P, which should be recognized when studying P cycling in marine ecosystems.展开更多
The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant fe...The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.展开更多
Experiments in monitoring the removal of organic material and nitrogen and determining the amounts of mi- croorganism at different sites in the subsurface flow constructed wetland in Sihong county were performed. The ...Experiments in monitoring the removal of organic material and nitrogen and determining the amounts of mi- croorganism at different sites in the subsurface flow constructed wetland in Sihong county were performed. The results show that the removal of CODCr agrees with the kinetic equation of a first order reaction. The removal of pollutants varies with different seasons. The removal rates of CODCr, NH3-N, TN in the spring are 15%–23% higher than those in the autumn. The amount of ammonifier is larger than that of denitrifying bacteria and the amount of denitrifying bacte- ria is larger than that of nitrosomonas. The amount of bacteria around the plant roots is larger than that on the surface of the packing medium. No apparent change is observed for the amount of denitrifying bacteria and nitrosomonas between spring and autumn.展开更多
In this study, we examined the expression of inducible nitric oxide s ynthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistoc hemi cal staining in 76 tissue sections collected from hepatocellula...In this study, we examined the expression of inducible nitric oxide s ynthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistoc hemi cal staining in 76 tissue sections collected from hepatocellular carcinoma (HCC) patients undergoing hepatectomy. Microvascular density (MVD) was determined by counting endothelial cells immunostained using anti-CD34 antibody. We performe d DNA-flow cytometric analyses to elucidate the impact of iNOS and VEGF expressi o n on the cell cycle of HCC. Most of the HCC cells that invaded stroma were mark edly immunostained by iNOS antibody. The iNOS stain intensity of the liver tissu e close to the tumor edge was stronger than that of HCC tissue, and the stronges t was the hepatocytes closer to the tumor tissue. However, iNOS expression in 10 normal hepatic samples was undetectable. VEGF positive expression ratio was 84. 8% in iNOS positive expression cases, and the ratio was 35.3% in negative cases. There was significant correlation (P=0.000) between iNOS and VEGF expressi on. Moreover, iNOS expression was significantly associated with bcl-2 and MVD, but w ithout p53 expression. DNA-flow cytometric analyses showed that combined expres s ion of iNOS and VEGF had significant impact on the cell cycle in HCC. PI (Proli ferating Index) and SPF (S-phase fraction) in the combined positive expression o f iNOS and VEGF group was significantly higher than that in the combined negativ e group. The present findings suggested that iNOS expression was significantly a ssociated with angiogenesis, bcl-2 and cell proliferation of HCC.展开更多
基金the National Basic Research Development of China(2011CB936003)the National Natural Science Foundation of China(50971116)。
文摘Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of ChinaProject(1204GKCA065)supported by the Key Technology R&D Program of Gansu Province,China+1 种基金Project(201210)supported by the Fundamental Research Funds for the Universities of Gansu Province,ChinaProject(J201304)supported by the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China
文摘A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
文摘The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.
基金Project(41171361)supported by the National Natural Science Foundation of China(General Program)
文摘Knowledge of the changes in a material’s function, form, and location during the transfer and transformation of materials to generate human services will improve our understanding of how humanity interacts with the environment and of how services are formed by human activities. We compared lead’s anthropogenic and biogeochemical cycles and found that the services, pathways, and changes in form requiring the most attention. We traced lead through its life cycle and identified the changes in its functions, forms, and locations by examining technology and engineering information. Lead ore and scrap were the two main anthropogenic sources of lead. When lead provides human services, its main functions included the storage and delivery of electricity, anti-corrosion treatments, and radiation protection; the main forms of lead in these products were Pb, PbO2 and PbSO4, and the main location changed from lithosphere in central China to regions in eastern China.
文摘Bioconvection plays an inevitable role in introducing sustainable and environment-friendly fuel cell technologies.Bio-mathematical modelling of such designs needs continuous refinements to achieve strong agreements in experimental and computational results.Actually,microorganisms transport a miscellaneous palette of ingredients in manufacturing industrial goods particularly in fertilizer industries.Heat transfer characteristics of molecular structure are measured by a physical phenomenon which is allied with the transpiration of heat within matter.Motivated by bioinspired fuel cells involved in near-surface flow phenomena,in the present article,we examine the transverse swimming of motile gyrotactic microorganisms numerically in a rheological Jeffery fluid near a stretching wall.The leading physical model is converted in a nonlinear system of ODEs through proper similarity alterations.A numerical technique called shooting method with R-K Fehlberg is applied via mathematical software and graphical presentations are obtained.The influence of all relative physical constraints on velocity,temperature,concentration,and volume fraction of gyrotactic microorganisms is expressed geometrically.It is found that heat and mass flux at the surface as well as density of motile microorganism’s declines for Brownian motion and thermophoresis parameter.Comparison in tabular form is made with existing literature to validate the results for limiting cases with convective boundary conditions.
基金Supported by A James Cook University Program Grant (2003) and A Cancer Council Queensland scholarship
文摘AIM:To explore the impact of fecal incontinence (FI) on quality of life (QOL) of patients attending urogynecology and colorectal clinics (CCs).METHODS:Cross-sectional study of 154 patients (27 male) with FI,who attended the clinics at a regional hospital in North Queensland,Australia in 2003 and 2004,and completed the Fecal Incontinence Quality of Life Scale (FIQL:1=very affected;4=not affected).RESULTS:More than 22% of patients had their QOL affected severely by FI.Patients reported that they had not previously been asked about FI by a medical practitioner nor did they voluntarily disclose its presence.The median FIQL scores for all participants were:lifestyle=3.24;coping=2.23;depression=2.42;and embarrassment=2.33.Increasing frequency of soiling had a negative effect on all four FIQL scales (P < 0.001) as did the quantity of soiling (P < 0.01).Female CC patients had poorer FIQL scores than urogynecology clinic patients for lifestyle (P=0.015),coping (P=0.004) and embarrassment (P=0.009),but not depression (P=0.062),despite having experienced FI for a shorter period.CONCLUSION:Failure to seek treatment for FI degrades the quality of patients' lives over time.FI assessment tools should incorporate the quantity of fecal loss.
文摘Pereutaneous coronary intervention (PCI) for coronary bifurcation lesions has been associated with lower procedural success rates and worse clinical outcomes compared with PCI for simple coronary lesions. Angiographic evaluation alone is sometimes inaccurate and does not reflect the fimctional significance of bifurcation lesions. The fractional flow reserve (FFR) is an easily obtainable, reliable, and reproducible physiologic parameter. This parameter is epicardial lesion specific and reflects both degree of stenosis and the myocardial territory supplied by the specific artery. Recent studies have shown that FFR-guided provisional side branch intervention strategy for bifurcation lesions is feasible and effective and can reduce unnecessary complex interventions and related complications. However, an adequate understanding of coronary physiology and the pitfalls of FFR is essential to properly use FFR for PCI of complex bifurcation lesions.
基金financially supported by the National Natural Science Foundation of China (Nos. 41530965, 41276071, 41003052)the Fundamental Research Funds for the Central Universities (No. 201564008)
文摘To improve the burial flux calculations of bioavailable phosphorus (P) and study opal-associated P (Opal-P) in the East China Sea (ECS), surface and core sediments were collected in the Changjiang Estuary (CE) and the south of the Cheju Island. In this study, sedimentary P was operationally divided into seven different forms using modified sedimentary extraction (SEDEX) technique: LSor-P (exchangeable or loosely sorbed P), Fe-P (easily reducible or reactive ferric Fe-bound P), CFA-P (authigenic carbonate fluorapatite and biogenic apatite and CaCO3-bound P), Detr-P (detrital apatite), Org-P (organic P), Opal-P and Ref-P (refractory P). The data revealed that the concentrations of the seven different P forms rank as Detr-P 〉 CFA-P 〉 Org-P 〉 Ref-P 〉 Opal-P 〉 Fe-P 〉 LSor-P in surface sediments and CFA-P 〉 Detr-P 〉 Org-P 〉 Ref-P 〉 Fe-P 〉 Opal-P 〉 LSor-P in core sediments. The distributions of the total phosphorus (TP), TIP, CFA-P, Detr-P are similar and decrease from the CE to the south of the Cheju Island. Meanwhile, Org-P and Opal-P exhibit different distribution trends; this may be affected by the grain size and TOM. The concentrations of potentially bioavailable P are 9.6-13.0 μmol g^-1 and 10.0-13.6 μmol g^-1, representing 61%-70% and 41%?64% of the TP in surface and core sediments, respectively. The concentrations of Opal-P are 0.6-2.3 μmol g^-1 and 0.6-1.4 μmol g^-1 in surface and core sediments, ac-counting for 5.3%?19.8% and 4.2%?10.6% of bioavailable P, respectively. The total burial fluxes of Opal-P and bioavailable P are 1.4×10^9 mol y^-1 and 1.1×10^10 mol yr^-1 in the ECS, respectively. Opal-P represents about 12.7% of potentially bioavailable P, which should be recognized when studying P cycling in marine ecosystems.
基金Supported by TOTAL(DS-2885)the National Natural Science Foundation of China(91434201,21422608)the “Strategic Priority Research Program” of the Chinese Academy of Sciences(XDA07080000)
文摘The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.
文摘Experiments in monitoring the removal of organic material and nitrogen and determining the amounts of mi- croorganism at different sites in the subsurface flow constructed wetland in Sihong county were performed. The results show that the removal of CODCr agrees with the kinetic equation of a first order reaction. The removal of pollutants varies with different seasons. The removal rates of CODCr, NH3-N, TN in the spring are 15%–23% higher than those in the autumn. The amount of ammonifier is larger than that of denitrifying bacteria and the amount of denitrifying bacte- ria is larger than that of nitrosomonas. The amount of bacteria around the plant roots is larger than that on the surface of the packing medium. No apparent change is observed for the amount of denitrifying bacteria and nitrosomonas between spring and autumn.
文摘In this study, we examined the expression of inducible nitric oxide s ynthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistoc hemi cal staining in 76 tissue sections collected from hepatocellular carcinoma (HCC) patients undergoing hepatectomy. Microvascular density (MVD) was determined by counting endothelial cells immunostained using anti-CD34 antibody. We performe d DNA-flow cytometric analyses to elucidate the impact of iNOS and VEGF expressi o n on the cell cycle of HCC. Most of the HCC cells that invaded stroma were mark edly immunostained by iNOS antibody. The iNOS stain intensity of the liver tissu e close to the tumor edge was stronger than that of HCC tissue, and the stronges t was the hepatocytes closer to the tumor tissue. However, iNOS expression in 10 normal hepatic samples was undetectable. VEGF positive expression ratio was 84. 8% in iNOS positive expression cases, and the ratio was 35.3% in negative cases. There was significant correlation (P=0.000) between iNOS and VEGF expressi on. Moreover, iNOS expression was significantly associated with bcl-2 and MVD, but w ithout p53 expression. DNA-flow cytometric analyses showed that combined expres s ion of iNOS and VEGF had significant impact on the cell cycle in HCC. PI (Proli ferating Index) and SPF (S-phase fraction) in the combined positive expression o f iNOS and VEGF group was significantly higher than that in the combined negativ e group. The present findings suggested that iNOS expression was significantly a ssociated with angiogenesis, bcl-2 and cell proliferation of HCC.