Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its d...Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its distribution,local concentration distribution and droplet size-velocity relation with the applied time of electric field. The simulated average droplet size is roughly consistent with the experimental value. The simulated variation of droplet number with time under several applied voltages shows that increasing voltage is more effective for raising the rate of droplet coalescence than extending exerting time. However, with the further raise of applied voltage, the improvement in droplet coalescence rate becomes less significant. The evolution of simulated droplet size–velocity relationship with time shows that the inter-droplet electric repulsion force is very strong due to larger electric charge on the droplet under higher applied voltage, so that the magnitude and the direction of droplet velocity become more random, which looks helpful to droplet coalescence.展开更多
A computational fluid dynamics (CFD) model is carried out to describe the wire-plate electrostatic precipitator (ESP) in high temperature conditions, aiming to study the effects of high temperature on the electro-...A computational fluid dynamics (CFD) model is carried out to describe the wire-plate electrostatic precipitator (ESP) in high temperature conditions, aiming to study the effects of high temperature on the electro- hydrodynamic (EHD) characteristics. In the model, the complex interactions at high temperatures between the electric field, fluid dynamics and the particulate flow are taken into account. We apply different numerical methods for different fields, including an electric field model, Euler-Lagrange particle-laden flows model, and particle charging model. The effects of high temperature on ionic wind, EHD characteristics and collection effi- ciency are investigated. The numerical results show high temperature causes more significant effects of the ionic wind on the gas secondary flow. High viscosity of gas at high temperature makes particles follow the gas flow pattern more closely. High temperature reduces the surface electric strength, so that the mean electric strength weakens the space charging. On the contrary, there is an increase in the diffusion charging at high tem- perature compared with at low temperature. High temperature increases the ratio of mean drag force over mean electrostatic force actin~ on the ~atticles which mav contribute to a decline of collection efficiencv.展开更多
The rotating pipe fluid in the crossed electric and magnetic field not only suffered the forces in the steady condition, but also suffered Coriolis force, centrifugal force because of rotation and electromagnetic volu...The rotating pipe fluid in the crossed electric and magnetic field not only suffered the forces in the steady condition, but also suffered Coriolis force, centrifugal force because of rotation and electromagnetic volume force. The motion equation of fluid and the hydrokinetics equations of rotating pipe were described in the Cartesians coordinates. The equations showed that the solutions to hydrokinetics equations of rotating pipe in the crossed electric and magnetic electromagnetic field were highly complicated and numerical calculations were also astronomical. The pressure distribution and temperature distribution of one dimension were solved using the electromagnetic equations set. The results showed that the fluid in rotating pipe was in the asymmetrical pressure field and temperature field because it was in the energy exchange and thermo-electrical coupling course. The primary characteristic of flow course could be expressed using the proposed hydrokinetics equations.展开更多
A new dimmer using a mental-oxide-semiconductor field-effect transistor (MOSFET) for alternating-current (AC) directly driven light-emitting-diode (LED) lamp was presented. The control method of proposed dimmer is pul...A new dimmer using a mental-oxide-semiconductor field-effect transistor (MOSFET) for alternating-current (AC) directly driven light-emitting-diode (LED) lamp was presented. The control method of proposed dimmer is pulse width control (PWM) method. Compared with the conventional phase-controlled dimmer, the proposed PWM dimmer can produce sine wave and did not cause harmonics problem. Furthermore, the proposed control method did not amplify the light flicker due to the independence of input voltage. Therefore, the PWM dimmer can be used as the dimmer of the AC LED lamp instead of the conventional phase-controlled dimmer. The experimental result shows that the proposed PWM dimmer has good performances.展开更多
Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is d...Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is driven by thedc and ac electric fields. The slow variation in the intraband polarization depends on the ac electric field frequency. Theintraband polarization increases when the ac electric field frequency is below the Bloch frequency. When the ac electricfield frequency is above the Bloch frequency, the intraband polarization downwards and its intensity decreases. Thesatellite structures in the optical absorption spectra are presented. Due to excitonic dynamic localization, the emissionlines of terahertz shift in different ac electric field and dc electric field.展开更多
We clarify how magnetic reconnection can be derived from magnetohydrodynamics (MHD) equations in a way that is easily understandable to university students. The essential mechanism governing the time evolution of th...We clarify how magnetic reconnection can be derived from magnetohydrodynamics (MHD) equations in a way that is easily understandable to university students. The essential mechanism governing the time evolution of the magnetic field is diffusion dynamics. The magnetic field is represented by two components. It is clarified that the diffusion of a component causes agene ration of another component that is initially zero and, accordingly, that the magnetic force lines are reconnected. For this reconnection to occur correctly, the initial magnetic field must be directed oppositely in the two regions, e.g., y 〉 0 and y 〈 O; must be concave (convex) for y 〉 0 (y 〈 0); and must be saturated foryfar from the x axis, which would indicate the existence of the current sheet. It will be clear that our comprehension based on diffusion runs parallel to the common qualitative explanation about the magnetic reconnection.展开更多
Special interest in current interruptions is dedicated to the processes close to the current zero instant, the so-called interaction region, which determines the circuit breakers' performance. The quantities of inter...Special interest in current interruptions is dedicated to the processes close to the current zero instant, the so-called interaction region, which determines the circuit breakers' performance. The quantities of interest in this region are the distribution of temperature, density and pressure, velocity and gas mass flow along the electric arc axis, as well as the distribution of electric stress between contacts Calculation of steady SF_6 gas flow through the nozzle of a 420 kV circuit breaker at the current zero instant, for different arcing durations, was carried out using a commercial CFD (computational fluid dynamics) simulation tool. The calculation results were used to get insight into improvement possibilities of the SF_6 gas flow model used in the software for computer simulation of HV (high-voltage) circuit breakers. Electric field calculation results were performed for the same 420 kV circuit breaker, in order to estimate the breakdown voltage at the current zero instant.展开更多
It is very necessary for the investigation on mechanism of windblown sand movement to under- stand and find out effective measures of preventing and reducing danger of windblown sands,which al- so deals with some gene...It is very necessary for the investigation on mechanism of windblown sand movement to under- stand and find out effective measures of preventing and reducing danger of windblown sands,which al- so deals with some general characters and hot spots in the scientific forelands,such as multi-scale prob- lems,interactions among multi-physical-fields,ran- domness and nonlinearity as well as complex sys- tems.In recent years,a series of experiments in wind tunnels and theoretical modeling as well as computer simulation have been undertaken in the re- search group of environmental mechanics on wind- blown sand movement in Lanzhou University with the point of mechanical and geography intersecting view.Some original and essential progress has been achieved, which includes that the main regu- larities of charges on sand particles and the electric field in windblown sand flux and the effect of the electric field on the flux and the microwave propaga- tion are revealed,and the evolution process of windblown sand flux under the mutual couple inter- actions among several physical fields are predicted as well as the main features of Aeolian sand ripples are simulated.展开更多
We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyze...We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyzed the relationship between the characteristic of FACs at the PSBL in magnetotail and the Kp index. The main results indicated the followings: 1) In the different geomagnetic activity levels, the relative occurrence of FACs in PSBL increased monotonically with geomagnetic activity. 2) The density of FACs in PSBL increased monotonically with Kp index. In the storm main phase, the density of FACs increased dramatically, the maximum FACs approximately equaled 19.05 nA m-2 while Kp equaled 5.3) The variation of FACs density in PSBL was consistent with the variation of the Kp index. However, when AE〈800 nT, FACs density in PSBL increased with increasing AE, and when AE〉800 nT, it decreased with increasing AE. Therefore, our results suggested that the FACs density in PSBL had a closer correlation with Kp index.展开更多
Air pollution caused by particles with small size has been a global concern because of threats to human health.A feasible way to remove these super fine suspended particles is using electrostatic precipitation technol...Air pollution caused by particles with small size has been a global concern because of threats to human health.A feasible way to remove these super fine suspended particles is using electrostatic precipitation technology.Herein,the PIV was used to measure the particle velocity distribution.By analyzing the particle motion trend in high electric field,a process of particle charging loss was observed.This phenomenon cannot be explained by current particle charging theories.Our conclusions may improve the understanding of particle charging processes.展开更多
基金Supported by the Special Research Project of Fujian Province(JK2012027)the Natural Science Foundation of Fujian Province(2014J01201)
文摘Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its distribution,local concentration distribution and droplet size-velocity relation with the applied time of electric field. The simulated average droplet size is roughly consistent with the experimental value. The simulated variation of droplet number with time under several applied voltages shows that increasing voltage is more effective for raising the rate of droplet coalescence than extending exerting time. However, with the further raise of applied voltage, the improvement in droplet coalescence rate becomes less significant. The evolution of simulated droplet size–velocity relationship with time shows that the inter-droplet electric repulsion force is very strong due to larger electric charge on the droplet under higher applied voltage, so that the magnitude and the direction of droplet velocity become more random, which looks helpful to droplet coalescence.
基金Supported by the National Natural Science Foundation of China(51176170,51390490,51125025)the Natural Science Foundation of Zhejiang Province(LR12E06001)partially supported by the Fundamental Research Funds for the Central Universities
文摘A computational fluid dynamics (CFD) model is carried out to describe the wire-plate electrostatic precipitator (ESP) in high temperature conditions, aiming to study the effects of high temperature on the electro- hydrodynamic (EHD) characteristics. In the model, the complex interactions at high temperatures between the electric field, fluid dynamics and the particulate flow are taken into account. We apply different numerical methods for different fields, including an electric field model, Euler-Lagrange particle-laden flows model, and particle charging model. The effects of high temperature on ionic wind, EHD characteristics and collection effi- ciency are investigated. The numerical results show high temperature causes more significant effects of the ionic wind on the gas secondary flow. High viscosity of gas at high temperature makes particles follow the gas flow pattern more closely. High temperature reduces the surface electric strength, so that the mean electric strength weakens the space charging. On the contrary, there is an increase in the diffusion charging at high tem- perature compared with at low temperature. High temperature increases the ratio of mean drag force over mean electrostatic force actin~ on the ~atticles which mav contribute to a decline of collection efficiencv.
文摘The rotating pipe fluid in the crossed electric and magnetic field not only suffered the forces in the steady condition, but also suffered Coriolis force, centrifugal force because of rotation and electromagnetic volume force. The motion equation of fluid and the hydrokinetics equations of rotating pipe were described in the Cartesians coordinates. The equations showed that the solutions to hydrokinetics equations of rotating pipe in the crossed electric and magnetic electromagnetic field were highly complicated and numerical calculations were also astronomical. The pressure distribution and temperature distribution of one dimension were solved using the electromagnetic equations set. The results showed that the fluid in rotating pipe was in the asymmetrical pressure field and temperature field because it was in the energy exchange and thermo-electrical coupling course. The primary characteristic of flow course could be expressed using the proposed hydrokinetics equations.
文摘A new dimmer using a mental-oxide-semiconductor field-effect transistor (MOSFET) for alternating-current (AC) directly driven light-emitting-diode (LED) lamp was presented. The control method of proposed dimmer is pulse width control (PWM) method. Compared with the conventional phase-controlled dimmer, the proposed PWM dimmer can produce sine wave and did not cause harmonics problem. Furthermore, the proposed control method did not amplify the light flicker due to the independence of input voltage. Therefore, the PWM dimmer can be used as the dimmer of the AC LED lamp instead of the conventional phase-controlled dimmer. The experimental result shows that the proposed PWM dimmer has good performances.
基金Supported by National Science Foundation of China under Grant No.10647132the Scientific Research Fund of Hunan Provincial Education Department under Grant No.05B014
文摘Using an excitonic basis, we investigate the intraband polarization, optical absorption spectra, and terahertzemission of semiconductor superlattice with the density matrix theory. The excitonic Bloch oscillation is driven by thedc and ac electric fields. The slow variation in the intraband polarization depends on the ac electric field frequency. Theintraband polarization increases when the ac electric field frequency is below the Bloch frequency. When the ac electricfield frequency is above the Bloch frequency, the intraband polarization downwards and its intensity decreases. Thesatellite structures in the optical absorption spectra are presented. Due to excitonic dynamic localization, the emissionlines of terahertz shift in different ac electric field and dc electric field.
文摘We clarify how magnetic reconnection can be derived from magnetohydrodynamics (MHD) equations in a way that is easily understandable to university students. The essential mechanism governing the time evolution of the magnetic field is diffusion dynamics. The magnetic field is represented by two components. It is clarified that the diffusion of a component causes agene ration of another component that is initially zero and, accordingly, that the magnetic force lines are reconnected. For this reconnection to occur correctly, the initial magnetic field must be directed oppositely in the two regions, e.g., y 〉 0 and y 〈 O; must be concave (convex) for y 〉 0 (y 〈 0); and must be saturated foryfar from the x axis, which would indicate the existence of the current sheet. It will be clear that our comprehension based on diffusion runs parallel to the common qualitative explanation about the magnetic reconnection.
文摘Special interest in current interruptions is dedicated to the processes close to the current zero instant, the so-called interaction region, which determines the circuit breakers' performance. The quantities of interest in this region are the distribution of temperature, density and pressure, velocity and gas mass flow along the electric arc axis, as well as the distribution of electric stress between contacts Calculation of steady SF_6 gas flow through the nozzle of a 420 kV circuit breaker at the current zero instant, for different arcing durations, was carried out using a commercial CFD (computational fluid dynamics) simulation tool. The calculation results were used to get insight into improvement possibilities of the SF_6 gas flow model used in the software for computer simulation of HV (high-voltage) circuit breakers. Electric field calculation results were performed for the same 420 kV circuit breaker, in order to estimate the breakdown voltage at the current zero instant.
基金the Key Project of the National Natural Science Foundation of China(No.10532040)
文摘It is very necessary for the investigation on mechanism of windblown sand movement to under- stand and find out effective measures of preventing and reducing danger of windblown sands,which al- so deals with some general characters and hot spots in the scientific forelands,such as multi-scale prob- lems,interactions among multi-physical-fields,ran- domness and nonlinearity as well as complex sys- tems.In recent years,a series of experiments in wind tunnels and theoretical modeling as well as computer simulation have been undertaken in the re- search group of environmental mechanics on wind- blown sand movement in Lanzhou University with the point of mechanical and geography intersecting view.Some original and essential progress has been achieved, which includes that the main regu- larities of charges on sand particles and the electric field in windblown sand flux and the effect of the electric field on the flux and the microwave propaga- tion are revealed,and the evolution process of windblown sand flux under the mutual couple inter- actions among several physical fields are predicted as well as the main features of Aeolian sand ripples are simulated.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40804031, 41074114, 40921063)the Specialized Research Fund for State Key Laboratories
文摘We have studied 172 field-aligned currents (FACs) cases observed by the ClusterlI satellites when they crossed the plasma sheet boundary layer (PSBL) in the magnetotail from July to October 2001. We mainly analyzed the relationship between the characteristic of FACs at the PSBL in magnetotail and the Kp index. The main results indicated the followings: 1) In the different geomagnetic activity levels, the relative occurrence of FACs in PSBL increased monotonically with geomagnetic activity. 2) The density of FACs in PSBL increased monotonically with Kp index. In the storm main phase, the density of FACs increased dramatically, the maximum FACs approximately equaled 19.05 nA m-2 while Kp equaled 5.3) The variation of FACs density in PSBL was consistent with the variation of the Kp index. However, when AE〈800 nT, FACs density in PSBL increased with increasing AE, and when AE〉800 nT, it decreased with increasing AE. Therefore, our results suggested that the FACs density in PSBL had a closer correlation with Kp index.
基金supported by the National Natural Science Foundation of China(Grant No.51107095)
文摘Air pollution caused by particles with small size has been a global concern because of threats to human health.A feasible way to remove these super fine suspended particles is using electrostatic precipitation technology.Herein,the PIV was used to measure the particle velocity distribution.By analyzing the particle motion trend in high electric field,a process of particle charging loss was observed.This phenomenon cannot be explained by current particle charging theories.Our conclusions may improve the understanding of particle charging processes.