In reversed-phase high performance liquid chromatography (RP-HPLC), the mobile phase condition for separating eight isoflavones (daidzin, glycitin, genistin, 6'-o-acetyl daidzin, 6'-o-malonyl genistin, daidzein, ...In reversed-phase high performance liquid chromatography (RP-HPLC), the mobile phase condition for separating eight isoflavones (daidzin, glycitin, genistin, 6'-o-acetyl daidzin, 6'-o-malonyl genistin, daidzein, glycitein and genistein) was optimized using the HCI (High-Purity Separation Laboratory, Department of Chemical Engineering, Inha University) program software. The optimum composition of mobile phase for the separation of the eight isoflavones was obtained. The elution profiles were calculated by the plate theory based on the equations of retention factor, In k=A+BF+CF2, where F was the volume percentage of acetonitrile with 0.1% acetic acid (AA). The first mobile phase composition was water with 0.1% AA/acetonitrile with 0.1% AA (88%/12%, by volume), followed at 9min later by the second composition of mobile phase which was step-changed to 85%/15%, at 19rain by the third composition which was step-changed to 73%/27%, at 30min when it was changed to 65%/35% and finally it was maintained in isocratic mode to the end of the run time at 50rain. Although, using step gradient mode to separate the isoflavones, the calculated and experimented data were not achieved very good agreement, we could estimate the closed retention time before experiment. And the agreement between the experimental data and the calculated values was relatively good using isocratic separation for eight isoflavones, but the retention time is very long.展开更多
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The e...The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the fwst case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.展开更多
The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions.A few density-mismatched particle trajectories are used to reconstruct the dynamics of a neutra...The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions.A few density-mismatched particle trajectories are used to reconstruct the dynamics of a neutrally-buoyant particle all over the target domain.We propose to take advantage of the dissipative dynamics of density-mismatched particles in order to probe the target domain.Thereafter,we retrieve the neutrally-buoyant particle flow all over the domain by reconstructing the phase space of the density-mismatched particulate flow and taking the limit of the particle-to-fluid density ratio tending to one.The robustness of such an approach is demonstrated by deliberately ill-conditioning the reconstruction operator.In fact,we show that our algorithm well performs even when we rely on qualitatively-different density-mismatched orbit topologies or on bundles of close trajectories rather than homogeneously distributed orbits.Potential applications to microfluidics and improvements of the proposed algorithm are finally discussed.展开更多
文摘In reversed-phase high performance liquid chromatography (RP-HPLC), the mobile phase condition for separating eight isoflavones (daidzin, glycitin, genistin, 6'-o-acetyl daidzin, 6'-o-malonyl genistin, daidzein, glycitein and genistein) was optimized using the HCI (High-Purity Separation Laboratory, Department of Chemical Engineering, Inha University) program software. The optimum composition of mobile phase for the separation of the eight isoflavones was obtained. The elution profiles were calculated by the plate theory based on the equations of retention factor, In k=A+BF+CF2, where F was the volume percentage of acetonitrile with 0.1% acetic acid (AA). The first mobile phase composition was water with 0.1% AA/acetonitrile with 0.1% AA (88%/12%, by volume), followed at 9min later by the second composition of mobile phase which was step-changed to 85%/15%, at 19rain by the third composition which was step-changed to 73%/27%, at 30min when it was changed to 65%/35% and finally it was maintained in isocratic mode to the end of the run time at 50rain. Although, using step gradient mode to separate the isoflavones, the calculated and experimented data were not achieved very good agreement, we could estimate the closed retention time before experiment. And the agreement between the experimental data and the calculated values was relatively good using isocratic separation for eight isoflavones, but the retention time is very long.
基金supported by the 7 EU framework project and was carried out within the research project with the acronym TFAST(Transition Location Effect on Shock Wave Boundary Layer Interaction)supported by CI TASK and PL-Grid Infrastructure
文摘The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the fwst case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.
文摘The correction of buoyancy effects is tackled for particles moving close to a singular corner in creeping flow conditions.A few density-mismatched particle trajectories are used to reconstruct the dynamics of a neutrally-buoyant particle all over the target domain.We propose to take advantage of the dissipative dynamics of density-mismatched particles in order to probe the target domain.Thereafter,we retrieve the neutrally-buoyant particle flow all over the domain by reconstructing the phase space of the density-mismatched particulate flow and taking the limit of the particle-to-fluid density ratio tending to one.The robustness of such an approach is demonstrated by deliberately ill-conditioning the reconstruction operator.In fact,we show that our algorithm well performs even when we rely on qualitatively-different density-mismatched orbit topologies or on bundles of close trajectories rather than homogeneously distributed orbits.Potential applications to microfluidics and improvements of the proposed algorithm are finally discussed.