As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-d...As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.展开更多
In this paper, a mathematical model for steady blood flow through blood vessels with uniform cross-section in stenoses arteries has been proposed. Blood is assumed to be non- Newtonian, incompressible and homogeneous ...In this paper, a mathematical model for steady blood flow through blood vessels with uniform cross-section in stenoses arteries has been proposed. Blood is assumed to be non- Newtonian, incompressible and homogeneous fluid. Blood in human artery is represented as Bingham plastic fluid. Expressions for flow rate, wall shear stress, and resistance to flow against stenoses size have been obtained. Obtained results indicate that stenoses size decreases the flow rate and increases the wall shear stress as well as resistance to flow.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos. 51309040, 51379025), and the Fundamental Research Funds for the Central Universities (Nos. 3132014224, 3132014318).
文摘As a basic problem in many engineering applications, transition from laminar to turbulence still remains a difficult problem in computational fluid dynamics (CFD). A numerical study of one transitional flow in two-dimensional is conducted by Reynolds averaged numerical simulation (RANS) in this paper. Turbulence model plays a significant role in the complex flows' simulation, and four advanced turbulence models are evaluated. Numerical solution of frictional resistance coefficient is compared with the measured one in the transitional zone, which indicates that Wilcox (2006) k-ω model with correction is the best candidate. Comparisons of numerical and analytical solutions for dimensionless velocity show that averaged streamwise dimensionless velocity profiles correct the shape rapidly in transitional region. Furthermore, turbulence quantities such as turbulence kinetic energy, eddy viscosity, and Reynolds stress are also studied, which are helpful to learn the transition's behavior.
文摘In this paper, a mathematical model for steady blood flow through blood vessels with uniform cross-section in stenoses arteries has been proposed. Blood is assumed to be non- Newtonian, incompressible and homogeneous fluid. Blood in human artery is represented as Bingham plastic fluid. Expressions for flow rate, wall shear stress, and resistance to flow against stenoses size have been obtained. Obtained results indicate that stenoses size decreases the flow rate and increases the wall shear stress as well as resistance to flow.