As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new appro...As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new approach: representing workflow models using π calculus. As a result, the model can characterize the dynamic behaviors of the workflow process in terms of the LTS (Labeled Transition Semantics) semantics of π calculus. The main advantage of the workflow model's formal semantic is that it allows for verification of the model's properties, such as deadlock free and normal termination. Moreover, the equivalence of workflow models can be checked through weak bisimulation theorem in the π calculus, thus facilitating the optimization of business processes.展开更多
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings,...At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings, cores, tank walls, and radiators. This paper outlines its physical models and numerical solution methods. Furthermore, for oil-immersed transformers, it presents an application to a HV (high voltage) winding in a traction transformer of locomotives, cooled by synthetic ester.展开更多
When the subway train operates at a speed higher than 100 km/h,the corresponding aerodynamic issue becomes severe.To meet the future requirement for the speedup of subway trains,a research on the critical diameters of...When the subway train operates at a speed higher than 100 km/h,the corresponding aerodynamic issue becomes severe.To meet the future requirement for the speedup of subway trains,a research on the critical diameters of the subway tunnel for trains operating at 120 and 140 km/h has been performed based on passengers’aural discomfort caused by rail tunnel pressure variation.A three-dimensional computational fluid dynamic approach has been adopted for analysis.Meanwhile,trains with different airtight indices are considered and the pressure variations inside and outside the trains are both under investigation.Based on the corresponding criteria for different airtight indices,critical tunnel diameters for trains running at different speeds have been determined.This study would aid in the tunnel section design for future high-speed subway trains.展开更多
文摘As a variant of process algebra, π calculus can describe the interactions between evolving processes. By modeling activity as a process interacting with other processes through ports, this paper presents a new approach: representing workflow models using π calculus. As a result, the model can characterize the dynamic behaviors of the workflow process in terms of the LTS (Labeled Transition Semantics) semantics of π calculus. The main advantage of the workflow model's formal semantic is that it allows for verification of the model's properties, such as deadlock free and normal termination. Moreover, the equivalence of workflow models can be checked through weak bisimulation theorem in the π calculus, thus facilitating the optimization of business processes.
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
文摘At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings, cores, tank walls, and radiators. This paper outlines its physical models and numerical solution methods. Furthermore, for oil-immersed transformers, it presents an application to a HV (high voltage) winding in a traction transformer of locomotives, cooled by synthetic ester.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2011CB711100)the National Natural Science Foundation of China(Grant No.11302233)
文摘When the subway train operates at a speed higher than 100 km/h,the corresponding aerodynamic issue becomes severe.To meet the future requirement for the speedup of subway trains,a research on the critical diameters of the subway tunnel for trains operating at 120 and 140 km/h has been performed based on passengers’aural discomfort caused by rail tunnel pressure variation.A three-dimensional computational fluid dynamic approach has been adopted for analysis.Meanwhile,trains with different airtight indices are considered and the pressure variations inside and outside the trains are both under investigation.Based on the corresponding criteria for different airtight indices,critical tunnel diameters for trains running at different speeds have been determined.This study would aid in the tunnel section design for future high-speed subway trains.