Using the self-developed viscosity measuring device, the viscosity variations of coal-oil slurries with temperature increasing during coal-oil co-processing were studied. The results show that the viscosity of coal-oi...Using the self-developed viscosity measuring device, the viscosity variations of coal-oil slurries with temperature increasing during coal-oil co-processing were studied. The results show that the viscosity of coal-oil slurries prepared by different kinds of oil varies differently during heating. The viscosity of the coal-oil slurry prepared by the catalytic cracking slurry (FCC) generally decreases during heating. However, the viscosity of the coal-oil slurry prepared by the high-temperature coal tar (CT) will peak at 338 ℃ during heating. The differences in viscosity variations of coal-oil slurries are analyzed. In addition to the temperature, the properties of the solvents and coal are the main influencing factors. Because the used coal contains a large number of polar functional groups, the swelling behavior of the coal in polar solvent (CT) is stronger than that in non-polar solvent (FCC). The swelling effect of the coal can result in the appearance of the viscosity peak. Therefore, before 100 ~C, the solvent molecules entering into the coal pores is the main influencing factor of coal-oil slurries viscosity variations. After 100 ℃, the increasing of particle size of coal particles is the main influencing factor of coal-oil slurries viscosity variations.展开更多
Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus. The blood cells were labelled with sodium pertechnetate and fixed in 1 0%formalin; they were 22 × 15 μm in size ...Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus. The blood cells were labelled with sodium pertechnetate and fixed in 1 0%formalin; they were 22 × 15 μm in size and had a specific gravity close to that of dog red blood cells. These cells had no discernible effect on systemic hemodynamics after injection, did not agglutinate, were well mixed and evenly distributed throughout the body, and were completely extracted in one circulation through the mandible. The mandibular ramus was divided into six regions. and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized, microspheres. Furthermore, the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method. We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.展开更多
Rheological properties of large particulate-liquid model food systems were studied by using the BMS (ball measuring system). The model food systems were composed of alginate gel particles (-10mm) and a gelatinised...Rheological properties of large particulate-liquid model food systems were studied by using the BMS (ball measuring system). The model food systems were composed of alginate gel particles (-10mm) and a gelatinised starch solution with 1% w/w sodium chloride as a liquid phase. The effects of particle phase volume (Ф, 0-0.60), particle shapes (cube, sphere, rod and disc) and starch concentrations (3% and 5% w/w starch) were investigated. The power law model was successfully applied to characterize the flow properties of each system and the consistency K and power law index n were obtained. The K increased and n decreased with increasing # for samples at all particle shapes at 3% w/w starch in the liquid phase. The particle effect on the viscosity is further analysed by means of the Krieger-Dougherty model and the maximum packing fraction #,, and the intrinsic viscosity [η] were obtained in each system. The Фm, depended on the particle shape, as expected. The [7] value depended on particle shape and was largely in the order of 4.04 (cube), 3.28 (disc), 2.56 (sphere) and 2.32 (rod) at 3% w/w starch. The [η] also depended on starch concentration and was 1.1 at 5%,6 w/w starch in the liquid phase with spherical particles. The present results show successful application of BMS to study the rheological properties of large particulate liquid food systems at relatively small scale experiment (-0.5 L) and also that existing models for suspension rheology are applicable for such food systems to a great extend.展开更多
In this paper, we evaluate the general solutions for plane-symmetric thick domain walls in Lyra geometry in presence of bulk viscous fluid. Expressions for the energy density and pressure of domain walls are derived i...In this paper, we evaluate the general solutions for plane-symmetric thick domain walls in Lyra geometry in presence of bulk viscous fluid. Expressions for the energy density and pressure of domain walls are derived in both cases of uniform and time varying displacement field β. Some physical consequences of the models are also given. Finally, the geodesic equations and acceleration of the test particle are discussed.展开更多
文摘Using the self-developed viscosity measuring device, the viscosity variations of coal-oil slurries with temperature increasing during coal-oil co-processing were studied. The results show that the viscosity of coal-oil slurries prepared by different kinds of oil varies differently during heating. The viscosity of the coal-oil slurry prepared by the catalytic cracking slurry (FCC) generally decreases during heating. However, the viscosity of the coal-oil slurry prepared by the high-temperature coal tar (CT) will peak at 338 ℃ during heating. The differences in viscosity variations of coal-oil slurries are analyzed. In addition to the temperature, the properties of the solvents and coal are the main influencing factors. Because the used coal contains a large number of polar functional groups, the swelling behavior of the coal in polar solvent (CT) is stronger than that in non-polar solvent (FCC). The swelling effect of the coal can result in the appearance of the viscosity peak. Therefore, before 100 ~C, the solvent molecules entering into the coal pores is the main influencing factor of coal-oil slurries viscosity variations. After 100 ℃, the increasing of particle size of coal particles is the main influencing factor of coal-oil slurries viscosity variations.
文摘Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus. The blood cells were labelled with sodium pertechnetate and fixed in 1 0%formalin; they were 22 × 15 μm in size and had a specific gravity close to that of dog red blood cells. These cells had no discernible effect on systemic hemodynamics after injection, did not agglutinate, were well mixed and evenly distributed throughout the body, and were completely extracted in one circulation through the mandible. The mandibular ramus was divided into six regions. and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized, microspheres. Furthermore, the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method. We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.
文摘Rheological properties of large particulate-liquid model food systems were studied by using the BMS (ball measuring system). The model food systems were composed of alginate gel particles (-10mm) and a gelatinised starch solution with 1% w/w sodium chloride as a liquid phase. The effects of particle phase volume (Ф, 0-0.60), particle shapes (cube, sphere, rod and disc) and starch concentrations (3% and 5% w/w starch) were investigated. The power law model was successfully applied to characterize the flow properties of each system and the consistency K and power law index n were obtained. The K increased and n decreased with increasing # for samples at all particle shapes at 3% w/w starch in the liquid phase. The particle effect on the viscosity is further analysed by means of the Krieger-Dougherty model and the maximum packing fraction #,, and the intrinsic viscosity [η] were obtained in each system. The Фm, depended on the particle shape, as expected. The [7] value depended on particle shape and was largely in the order of 4.04 (cube), 3.28 (disc), 2.56 (sphere) and 2.32 (rod) at 3% w/w starch. The [η] also depended on starch concentration and was 1.1 at 5%,6 w/w starch in the liquid phase with spherical particles. The present results show successful application of BMS to study the rheological properties of large particulate liquid food systems at relatively small scale experiment (-0.5 L) and also that existing models for suspension rheology are applicable for such food systems to a great extend.
文摘In this paper, we evaluate the general solutions for plane-symmetric thick domain walls in Lyra geometry in presence of bulk viscous fluid. Expressions for the energy density and pressure of domain walls are derived in both cases of uniform and time varying displacement field β. Some physical consequences of the models are also given. Finally, the geodesic equations and acceleration of the test particle are discussed.