期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
我国和东亚地区硫化物的大气输送研究——流场分型统计输送模式 被引量:6
1
作者 姜振远 高庆先 +1 位作者 刘舒生 任阵海 《环境科学研究》 EI CAS CSCD 北大核心 1997年第1期14-21,共8页
提出了一种流场分型欧拉酸沉降输送模式,计算了1993年4月东亚地区硫氧化物平均浓度的时空分布以及我国各省区和东亚主要国家的硫沉降量。通过与实测资料对比,模式有较好的可信度,是一个计算硫氧化物长期平均浓度和硫沉降的简便... 提出了一种流场分型欧拉酸沉降输送模式,计算了1993年4月东亚地区硫氧化物平均浓度的时空分布以及我国各省区和东亚主要国家的硫沉降量。通过与实测资料对比,模式有较好的可信度,是一个计算硫氧化物长期平均浓度和硫沉降的简便、实用的酸沉降输送模式。 展开更多
关键词 流场分型 中国 东西地区 酸雨 硫化物 大气输送
下载PDF
陕西关中重污染天气低空流场的分型研究 被引量:3
2
作者 胡淑兰 胡琳 +2 位作者 程路 林扬 路岑之 《干旱区地理》 CSCD 北大核心 2022年第1期122-130,共9页
利用陕西关中区域内五市(西安、咸阳、渭南、铜川、宝鸡)有PM_(2.5)监测数据以来的2014—2019年各市污染指数(AQI)筛选代表年,定义关中区域污染和区域重污染天气过程,结合陕西WRF(Weather research & forecasting model)模拟数据,... 利用陕西关中区域内五市(西安、咸阳、渭南、铜川、宝鸡)有PM_(2.5)监测数据以来的2014—2019年各市污染指数(AQI)筛选代表年,定义关中区域污染和区域重污染天气过程,结合陕西WRF(Weather research & forecasting model)模拟数据,对影响关中区域的流场分型,并重点研究了各流场分型与PM_(2.5)浓度的关系。结果表明:(1)根据关中区域低空流场,将重污染天气日流场分为:东部来流(A~C)、西部/南部来流(D~F)、北部来流非转向(G)和无显著流场(H)4个大类,根据出现时间和地点等,东部来流又分为东北来流(A)、东北来流夜间型(B)、渭南绕山来流(C),西部/南部来流分为西南/南部来流(D)、北部来流转向(E)、宝鸡来流(F),共8个类型分别记为A~H。(2)区域重污染过程中东部来流出现最多,频率达到59.8%,其中B、C型占比均达到25.0%以上;各流场分型昼夜变化较大,在昼间(08:00—19:00)流场中,出现最多的是C型流场,在夜间(20:00—07:00)流场中B、E、F型比较活跃,出现最多的是B型流场,另外A、D、G、H型夜间出现比昼间多。(3)关中区域重污染主要出现在冬季,除因供暖导致的污染物的排放量增加外,低空流场对污染物扩散影响显著,从流场分型上看,静稳天气、山谷风、北方污染物输送是导致关中区域重污染的主要原因。 展开更多
关键词 陕西关中 低空流场分型 区域重污染天气过程
下载PDF
A Plane-Symmetric Inhomogeneous Cosmological Model of Perfect Fluid Distribution with Electromagnetic Field Ⅰ
3
作者 Anirudh Pradhan Prashant KumarSingh Anil Kumar Yadav 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第7期191-196,共6页
A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electro-magnetic field is obtained. F12 is the non-vanishing component of electromagnetic field tensor. To get a deterministic solu... A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electro-magnetic field is obtained. F12 is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, we assume the free gravitational field is Petrov type-Ⅱ non-degenerate. Some physical and geometric properties of the model are also discussed. 展开更多
关键词 COSMOLOGY electromagnetic field inhomogeneous solution
下载PDF
CFD investigation and PIV validation of flow field in a compact return diffuser under strong part-load conditions 被引量:9
4
作者 ZHOU Ling SHI WeiDong +1 位作者 CAO WeiDong YANG HongBin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第3期405-414,共10页
The internal flow fields in a compact return diffuser under strong part-load conditions are investigated both numerically and experimentally.For numerical simulation,three-dimensional unsteady Reynolds-Averaged Navier... The internal flow fields in a compact return diffuser under strong part-load conditions are investigated both numerically and experimentally.For numerical simulation,three-dimensional unsteady Reynolds-Averaged Navier–Stokes equations are solved on high-quality structured grids in conjunction with the shear stress transport k–turbulence model by employing the computational fluid dynamics(CFD)software ANSYS-Fluent 14.5.For flow field measurements,a special test rig is designed and the two-dimensional particle image velocimetry(PIV)measurements are conducted in the diffuser midplane to capture the complex flow field and for validation of the CFD results.The analysis of the results has been focused on the flow structure in the diffuser,especially under part-load conditions.The detailed comparison between CFD and PIV results is performed.Vortical flow and recirculation flow patterns in the diffuser are captured and analyzed.Large flow separation and backflow appear under the part-load flow conditions.This paper provides a good data set for developing as well as evaluating the accuracy of various CFD models for capturing the complex flow field in a compact return diffuser used with multistage pumps. 展开更多
关键词 return diffuser numerical simulations part-load conditions particle image velocimetry
原文传递
COMPLEX SYSTEM ANALYSIS OF MARKET RETURN PERCOLATION MODEL ON SIERPINSKI CARPET LATTICE FRACTAL
5
作者 DONG Yanfang WANG Jun 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第4期743-759,共17页
This paper investigates the statistical behaviors of fluctuations of price changes in a stock market.The Sierpinski carpet lattice fractal and the percolation system are applied to develop a new random stock price for... This paper investigates the statistical behaviors of fluctuations of price changes in a stock market.The Sierpinski carpet lattice fractal and the percolation system are applied to develop a new random stock price for the financial market.The Sierpinski carpet is an infinitely ramified fractal and the percolation theory is usually used to describe the behavior of connected clusters in a random graph.The authors investigate and analyze the statistical behaviors of returns of the price model by some analysis methods,including multifractal analysis,autocorrelation analysis,scaled return interval analysis.Moreover,the authors consider the daily returns of Shanghai Stock Exchange Composite Index,and the comparisons of return behaviors between the actual data and the simulation data are exhibited. 展开更多
关键词 PERCOLATION RETURN Sierpinski carpet lattice fractal statistical analysis stock market.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部