The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and ther...The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and thermal noise under non-isothermal condition. By taking the dendritic growth of high pure succinonitrile (SCN) supercooled melt as an example, side-branching shape difference of melts with flow and without flow was analyzed. Relationships among supercooled melt inflow velocity, deflexion angle of dendritic arm and dendritic tip growth velocity were studied. Results show that the melt inflow velocity has few effects on the dendritic tip growth velocity. A formula of relationship between the velocity of the melt in front of primary dendritic tip and the dendritic growth time was deduced, and the calculated result was in quantitative agreement with the simulation result.展开更多
An accurate prediction of flows using CFD depends on a large number of factors. In addition to discretizing the flow region, the correct definition of boundary or initial conditions and the choice of suitable numerica...An accurate prediction of flows using CFD depends on a large number of factors. In addition to discretizing the flow region, the correct definition of boundary or initial conditions and the choice of suitable numerical methods, the applied turbulence model influences the results of the flow simulation to a great extent. Therefore, a validation of the results with the experimental data is of great importance for a correct selection of a turbulence model. It is the scope of this paper to assess different turbulence models for the simulation of pipe flows. The calculation results of pipe flows through a combination of 90~ elbows and a 1/3 segmental orifice are compared with experimental measurement results. This has the advantage that the suitability of the turbulence models for simulating both shear and swirl flows can be investigated. Thus, the k-ω, k-ε model and the Launder Reece Rodi Reynolds stress model are compared with each other and experimental results. Furthermore, this investigation is extended through including a much more c detached-eddy simulation. This model provides better prediction of the flow by resolving the large eddies and modeling the small ones. The experimental results originate from LDV measurements over the entire pipe cross-section. This measuring method provides velocity vectors over the measured surface.展开更多
In order to analyze the influence of blade outlet angle on inner flow field and performance of low-specific-speed centrifugal pump, the flow field in the pump with different blade outlet angles 32.5°and 39° ...In order to analyze the influence of blade outlet angle on inner flow field and performance of low-specific-speed centrifugal pump, the flow field in the pump with different blade outlet angles 32.5°and 39° was numerically calculated. The external performance experiment was also carried out on the pump. Based on SIMPLEC algorithm, time-average N-S equation and the rectified k-ε turbulent model were adopted during the process of computation. The distributions of velocity and pressure in pumps with different blade outlet angles were obtained by calculation. The numerical results show that backflow areas exist in the two impellers, while the inner flow has a little improvement in the impeller with larger blade outlet angle. Blade outlet angle has a certain influence on the static pressure near the long-blade leading edge and tongue, but it has little influence on the distribution of static pressure in the passages of impeller. The experiment results show that the low-specific-speed centrifugal pump with larger blade outlet angle has better hydraulic performance.展开更多
基金Project (10964004) supported by the National Natural Science Foundation of ChinaProject (096RJZA104) supported by the Natural Science Foundation of Gansu Province, China
文摘The effect of supercooled melt forced laminar flow at low Reynolds Number on dendritic growth perpendicular to melt flow direction was investigated with the phase-field method by incorporating melt convection and thermal noise under non-isothermal condition. By taking the dendritic growth of high pure succinonitrile (SCN) supercooled melt as an example, side-branching shape difference of melts with flow and without flow was analyzed. Relationships among supercooled melt inflow velocity, deflexion angle of dendritic arm and dendritic tip growth velocity were studied. Results show that the melt inflow velocity has few effects on the dendritic tip growth velocity. A formula of relationship between the velocity of the melt in front of primary dendritic tip and the dendritic growth time was deduced, and the calculated result was in quantitative agreement with the simulation result.
文摘An accurate prediction of flows using CFD depends on a large number of factors. In addition to discretizing the flow region, the correct definition of boundary or initial conditions and the choice of suitable numerical methods, the applied turbulence model influences the results of the flow simulation to a great extent. Therefore, a validation of the results with the experimental data is of great importance for a correct selection of a turbulence model. It is the scope of this paper to assess different turbulence models for the simulation of pipe flows. The calculation results of pipe flows through a combination of 90~ elbows and a 1/3 segmental orifice are compared with experimental measurement results. This has the advantage that the suitability of the turbulence models for simulating both shear and swirl flows can be investigated. Thus, the k-ω, k-ε model and the Launder Reece Rodi Reynolds stress model are compared with each other and experimental results. Furthermore, this investigation is extended through including a much more c detached-eddy simulation. This model provides better prediction of the flow by resolving the large eddies and modeling the small ones. The experimental results originate from LDV measurements over the entire pipe cross-section. This measuring method provides velocity vectors over the measured surface.
基金supported by National Natural Science Foundation of China granted No.50976105,No.51276172Zhejiang Provincial Natural Science Foundation Granted No.R1100530
文摘In order to analyze the influence of blade outlet angle on inner flow field and performance of low-specific-speed centrifugal pump, the flow field in the pump with different blade outlet angles 32.5°and 39° was numerically calculated. The external performance experiment was also carried out on the pump. Based on SIMPLEC algorithm, time-average N-S equation and the rectified k-ε turbulent model were adopted during the process of computation. The distributions of velocity and pressure in pumps with different blade outlet angles were obtained by calculation. The numerical results show that backflow areas exist in the two impellers, while the inner flow has a little improvement in the impeller with larger blade outlet angle. Blade outlet angle has a certain influence on the static pressure near the long-blade leading edge and tongue, but it has little influence on the distribution of static pressure in the passages of impeller. The experiment results show that the low-specific-speed centrifugal pump with larger blade outlet angle has better hydraulic performance.