Reconstructing long-term vegetation buffers along streams in agricultural landscapes has become a common environmental restoration strategy for improving water quality and wildlife habitat connectivity.This article de...Reconstructing long-term vegetation buffers along streams in agricultural landscapes has become a common environmental restoration strategy for improving water quality and wildlife habitat connectivity.This article developed a linear weighted model to rank the priority of agricultural sub-basins for the establishment of vegetative buffers.The method was applied to an agricultural watershed of 146 km2 in Ontario,Canada.The watershed was divided into 11 sub-basins as basic decision units.In each subbasin,four stream buffer schemes with widths of 5,10,15 and 20m were generated.For each buffer,three benefit-cost attributes of reconstructing vegetation cover were estimated,which include acreage per dollar,sediment abatement per dollar and habitat benefit per dollar.These attributes were first normalized using a linear normalization approach to eliminate the effects across different units.The normalized attributes were then integrated using a simple additive weighting method to rank the 11 sub-basins for prioritizing spatial restoration action.A sensitivity analysis was also conducted to observe the impact of a change in attribute weights on the management decisions.The results suggest that vegetation buffers reconstructed for achieving the water quality goal are not effective in improving habitat connectivity and vice versa.展开更多
In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, incl...In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and o.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg^1, 177 μgCO2·g^-1·day^-1 and 1.32 % found in cultivated land use, respectively. The organic matter was considerably higher content in the forest areas than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillie horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development.展开更多
Heavy metal pollutants are a worldwide concern due to slow decomposition, biocondensation, and negative effects on human health. We investigated seasonal and spatial variations of the five heavy metals and evaluated t...Heavy metal pollutants are a worldwide concern due to slow decomposition, biocondensation, and negative effects on human health. We investigated seasonal and spatial variations of the five heavy metals and evaluated their health risk in the Liaohe River, Northeast China. A total of 324 surface water samples collected from 2009 to 2010 were analyzed. Levels(high to low) of heavy metals in the Liaohe River were: zinc(Zn) > chromium(Cr) > copper(Cu) > cadmium(Cd) > mercury(Hg). Spatial and seasonal changes impacting concentrations of Cu and Zn were significant, but not significant for Cr, Cd and Hg. The highest concentrations of heavy metals were: Hg at Liuheqiao, Cu at Fudedian, Zn at Tongjiangkou, Cr at Mahushan, and Cd at Shenglitang. The highest concentrations of Hg and Cr were found in the wet period, Cu and Cd in the level period, and Zn in the dry period. The surface water of a tributary was an important accumulation site for heavy metals. Health risks from carcinogens and non-carcinogens increased from upstream to downstream in the mainstream of the Liaohe River. The total health risk for one person in the Liaohe River exceeded acceptable levels. The total health risk was the greatest during the wet period and least in the dry period. Among the five heavy metals in the Liaohe River, Cr posed the greatest single health risk.展开更多
Topographic attributes have been identified as the most important factor in controlling the initiation and distribution of shallow landslides triggered by rainfall.As a result,these landslides influence the evolution ...Topographic attributes have been identified as the most important factor in controlling the initiation and distribution of shallow landslides triggered by rainfall.As a result,these landslides influence the evolution of local surface topography.In this research,an area of 2.6 km 2 loess catchment in the Huachi County was selected as the study area locating in the Chinese Loess Plateau.The landslides inventory and landslide types were mapped using global position system(GPS) and field mapping.The landslide inventory shows that these shallow landslides involve different movement types including slide,creep and fall.Meanwhile,main topographic attributes were generated based on a high resolution digital terrain model(5 m × 5 m),including aspect,slope shape,elevation,slope angle and contributing area.These maps were overlaid with the spatial distributions of total landslides and each type of landslides in a geographic information system(GIS),respectively,to assess their spatial frequency distributions and relative failure potentials related to these selected topographic attributes.The spatial analysis results revealed that there is a close relation between the topographic attributes of the postlandsliding local surface and the types of landslide movement.Meanwhile,the types of landslide movement have some obvious differences in local topographic attributes,which can influence the relative failure potential of different types of landslides.These results have practical significance to mitigate natural hazard and understandgeomorphologic process in thick loess area.展开更多
基金supported by "SUST Spring Bud" Project (Grant no.2008AZZ110)National Key Technology R&D Program of China project (Grant no.2006BAJ15B02)
文摘Reconstructing long-term vegetation buffers along streams in agricultural landscapes has become a common environmental restoration strategy for improving water quality and wildlife habitat connectivity.This article developed a linear weighted model to rank the priority of agricultural sub-basins for the establishment of vegetative buffers.The method was applied to an agricultural watershed of 146 km2 in Ontario,Canada.The watershed was divided into 11 sub-basins as basic decision units.In each subbasin,four stream buffer schemes with widths of 5,10,15 and 20m were generated.For each buffer,three benefit-cost attributes of reconstructing vegetation cover were estimated,which include acreage per dollar,sediment abatement per dollar and habitat benefit per dollar.These attributes were first normalized using a linear normalization approach to eliminate the effects across different units.The normalized attributes were then integrated using a simple additive weighting method to rank the 11 sub-basins for prioritizing spatial restoration action.A sensitivity analysis was also conducted to observe the impact of a change in attribute weights on the management decisions.The results suggest that vegetation buffers reconstructed for achieving the water quality goal are not effective in improving habitat connectivity and vice versa.
文摘In order to study the effects of different land vegetative covers on soil quality attributes, a loess hill slope was selected in eastern Golestan Province, Ghapan watershed, Iran. Four profiles in four land uses, including Quercus natural forest; Pinus artificial forest; Cupressus artificial forest and a cultivated land, were studied. Results showed that MWD was significantly different in the studied land uses, and it varied between 1.6 mm in Quercus natural forest and o.31 mm in cultivated land use. The lowest CEC, microbial respiration rate and organic carbon were 28.4 cmol·kg^1, 177 μgCO2·g^-1·day^-1 and 1.32 % found in cultivated land use, respectively. The organic matter was considerably higher content in the forest areas than that of cultivated land use. The studies on soil profile development revealed that the natural forest soils were highly developed. The soils of the Quercus natural forest were classified as Calcic Haploxeralfs with a well developed argillie horizon unlike the cultivated soils which showed the minimum development and classified as Typic Xerorthents. The soils of the artificial forests had both mollic epipedons and were classified as Typic Calcixerolls with moderate profile development. Micromorphological studies revealed that argillic horizons had speckled and partly crystallitic b-fabric in the natural forest indicating the high landscape stability. In contrast, the crystallitic b-fabric of other land uses shows the absence of enough leaching of carbonate and the subsequent migration of clay particles indicating the unstable conditions and high soil erosion. Intense erosion of the surface horizons of cultivated land use has resulted in the outcropping of the subsurface carbonate rich horizons preventing soil development.
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07202-004-05)National Natural Science Foundation of China(No.41401352)Science and Enterprise Competitive Selection Project of Shenyang City,Shenyang Science and Technology Plan Project(No.F14-133-9-00)
文摘Heavy metal pollutants are a worldwide concern due to slow decomposition, biocondensation, and negative effects on human health. We investigated seasonal and spatial variations of the five heavy metals and evaluated their health risk in the Liaohe River, Northeast China. A total of 324 surface water samples collected from 2009 to 2010 were analyzed. Levels(high to low) of heavy metals in the Liaohe River were: zinc(Zn) > chromium(Cr) > copper(Cu) > cadmium(Cd) > mercury(Hg). Spatial and seasonal changes impacting concentrations of Cu and Zn were significant, but not significant for Cr, Cd and Hg. The highest concentrations of heavy metals were: Hg at Liuheqiao, Cu at Fudedian, Zn at Tongjiangkou, Cr at Mahushan, and Cd at Shenglitang. The highest concentrations of Hg and Cr were found in the wet period, Cu and Cd in the level period, and Zn in the dry period. The surface water of a tributary was an important accumulation site for heavy metals. Health risks from carcinogens and non-carcinogens increased from upstream to downstream in the mainstream of the Liaohe River. The total health risk for one person in the Liaohe River exceeded acceptable levels. The total health risk was the greatest during the wet period and least in the dry period. Among the five heavy metals in the Liaohe River, Cr posed the greatest single health risk.
基金supported by the National Natural Science Foundation of China (Project No.41072213)the Opening Fund of Key Laboratory of Mechanics on Disaster and Environment in Western China (Lanzhou University) (No. 201207)the Fundamental Research Funds for the Central Universities (No. lzujbky2011-7)
文摘Topographic attributes have been identified as the most important factor in controlling the initiation and distribution of shallow landslides triggered by rainfall.As a result,these landslides influence the evolution of local surface topography.In this research,an area of 2.6 km 2 loess catchment in the Huachi County was selected as the study area locating in the Chinese Loess Plateau.The landslides inventory and landslide types were mapped using global position system(GPS) and field mapping.The landslide inventory shows that these shallow landslides involve different movement types including slide,creep and fall.Meanwhile,main topographic attributes were generated based on a high resolution digital terrain model(5 m × 5 m),including aspect,slope shape,elevation,slope angle and contributing area.These maps were overlaid with the spatial distributions of total landslides and each type of landslides in a geographic information system(GIS),respectively,to assess their spatial frequency distributions and relative failure potentials related to these selected topographic attributes.The spatial analysis results revealed that there is a close relation between the topographic attributes of the postlandsliding local surface and the types of landslide movement.Meanwhile,the types of landslide movement have some obvious differences in local topographic attributes,which can influence the relative failure potential of different types of landslides.These results have practical significance to mitigate natural hazard and understandgeomorphologic process in thick loess area.